Advertisement

Chemical Research in Chinese Universities

, Volume 35, Issue 6, pp 1089–1094 | Cite as

Ethylene/1-Hexene Copolymerization with Modified Ziegler-Natta Catalyst

  • Meng Yin
  • Zhiqiang Zhang
  • Yujie Xiong
  • Min Liu
  • Yan Zhang
  • Puke MiEmail author
Article
  • 7 Downloads

Abstract

Siloxane compounds were treated with the compounds containing internal donors, such as aromatic ester, phosphate, or 1,3-diether compounds, and the resulting intermediates were further reacted with TiCl4 to form the modified Ziegler-Natta catalysts for ethylene/1-hexene(E-H) copolymerization. Using the modified Ziegler-Natta catalysts, the effect of the internal donors and the molar ratio of alcohol to magnesium on the catalyst performance was investigated by the orthogonal experiments. The synthetic method of the catalysts was also optimized by choosing the proper way to mix the internal donors. The branch degree, sequence structure, molecular weight, and molecular weight distribution of the copolymer products were determined by Fourier transform infrared spectroscopy(FTIR), carbon-13 nuclear magnetic resonance(13C NMR) spectrometry and gel permeation chromatography(GPC). Under the optimum conditions, the catalytic system with tetraethyl orthosilicate and 2,2-dimethoxypropane as the internal donors exhibited the best performance with an activity of 926.74 g copolymer/(g Cat·h−1). The branch degree, 1-hexene content, and molecular weight distribution of the resulting copolymers reached up to 40 branches/1000C, 5.99% and 5.8, respectively.

Keywords

Ziegler-Natta catalyst Internal donor Lewis base Ethylene-olefin copolymerization Copolymer structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Adison E., Ribeiro M., Deffieux A., Fontanille M., Polymer, 1992, 33, 4337CrossRefGoogle Scholar
  2. [2]
    Thomas G., Laura M., Marjo V., Virgine E., Kalle K., Päivi W., Journal of Applied Polymer Science, 2010, 115, 826CrossRefGoogle Scholar
  3. [3]
    Mo Z. S., Zhang H. F., Macromol. Chem. Phys., 1995, C35, 555CrossRefGoogle Scholar
  4. [4]
    Madri S., Zhang X. J., Robert B. J., John C. C., Cor E. K., J. Polym. Sci.: Part A: Polym. Chem., 2006, 44, 2883CrossRefGoogle Scholar
  5. [5]
    Chen Y. P., Fan Z. Q., European Polymer Journal, 2006, 42, 2441CrossRefGoogle Scholar
  6. [6]
    Nichapat S., Supaporn K., Bunjerd J., Piyasan P., Molecules, 2010, 15, 9323CrossRefGoogle Scholar
  7. [7]
    Young S. K., Taek K. H., Je W. P., Seong W., Journal of Polymer Science: Part A: Polymer Chemistry, 1997, 35, 2769CrossRefGoogle Scholar
  8. [8]
    Chua K., Joao B. P., Soares A. P., Ihm S., European Polymer Journal, 2000, 36, 3CrossRefGoogle Scholar
  9. [9]
    Rubin H., Federica M., Gianni P., Cor E. K., John C. C., Macromol. Rapid Commun., 2008, 29, 1732CrossRefGoogle Scholar
  10. [10]
    Toshiaki T., Toru W., Iku K., Shougo T., Minoru T., Macromolecular Research, 2010, 9(18), 839Google Scholar
  11. [11]
    Chu K. J., Joao B. P., Macromol. Chem. Phys., 1999, 200, 1298CrossRefGoogle Scholar
  12. [12]
    Parada A., Rajmankina T., Chirinos J. J., Morillo A., European Polymer Journal, 2002, 38, 2093CrossRefGoogle Scholar
  13. [13]
    Pooter M. D., Smith P. B., Dohrer K. K., Bennett K. F., Meadows M. D., Smith C. G., Schouwenaars H. P., Geerards R. A., Journal of Applied Polymer Science, 1991, 42, 399CrossRefGoogle Scholar
  14. [14]
    Yury V. K., Robert I. M., Journal of Polymer Science: Part A: Polymer Chemistry, 2010, 48, 4219CrossRefGoogle Scholar
  15. [15]
    Mikhail A. M., Ludmila G. E., Vladimir A. Z., Marina I. N., Tatyana B. M., Marina P. V., Macromol. Symp., 2009, 282, 157CrossRefGoogle Scholar
  16. [16]
    Ludmila G. E., Mikhail A. M., Tatiana B. M., Valentin E. N., Vladimir A. Z., Journal of Applied Polymer Science, 2006, 102, 5436CrossRefGoogle Scholar
  17. [17]
    Yury V. K., Robert I. M., Thomas E. N., Anita J. B., Topics in Catalysis, 1999, 7, 69CrossRefGoogle Scholar
  18. [18]
    Yury V. K., Syrnp., 1995, 89, 113Google Scholar
  19. [19]
    Zhang L. T., Fan Z. Q., Fu Z. S., e-Polymers, 2008, 143, 1Google Scholar
  20. [20]
    Zhang L. T., Fan L. N., Fan Z. Q., Fu Z. S., e-Polymers, 2010, 18, 1CrossRefGoogle Scholar
  21. [21]
    Lou J. Q., Liu X. Y., Fu Z. S., Wang Q., Xu J. T., Fan Z. Q., Acta Polymerica Sinica, 2009, 8, 748CrossRefGoogle Scholar
  22. [22]
    Xia S. J., Fu Z. S., Huang B., Xu J. T., Fan Z. Q., Journal of Molecular Catalysis A: Chemical, 2012, 355, 161CrossRefGoogle Scholar
  23. [23]
    Kumar V., Gurmeet S., Divya I., Virendra K. G., J. Phys. Chem. C, 2010, 114, 15771CrossRefGoogle Scholar
  24. [24]
    Seth M., Margl P. M., Macromolecules, 2002, 35, 7815CrossRefGoogle Scholar
  25. [25]
    Taniike T., Terano M., Macromol. Rapid Commun., 2007, 28, 1918CrossRefGoogle Scholar
  26. [26]
    Andoni A., Chadwick J. C., Niemantsverdriet H. J. W., Thüne P. C., J. Catal., Macromolecules, 2008, 257, 81Google Scholar
  27. [27]
    Ribour D., Monteil V., Spitz D., Polym. Sci. Part A: Polym. Chem., 2008, 46, 5461CrossRefGoogle Scholar
  28. [28]
    Potapov A. G., Bukatov G. D., Zakharov V. A., Journal of Molecular Catalysis A: Chemical, 2010, 316, 95CrossRefGoogle Scholar
  29. [29]
    Potapov A. G., Bukatov G. D., Zakharov V. A., Journal of Molecular Catalysis A: Chemical, 2009, 301, 18CrossRefGoogle Scholar
  30. [30]
    Sacchi M. C., Tritto I., Locatelli P. P., Polym. Sci., 1991, 16, 331Google Scholar
  31. [31]
    Yang J. F., Petrochemical Technology, 2010, 40(8), 840Google Scholar
  32. [32]
    Calabro D. C., Macromol. Chem. Phys., 1988, 729Google Scholar
  33. [33]
    Chien J. C., Nozaki T., J. Polym. Sci., 1993, 31, 227CrossRefGoogle Scholar
  34. [34]
    Walter P., Trinkle S., Suhm J., Macromol. Chem. Phys., 2000, 201, 604CrossRefGoogle Scholar
  35. [35]
    Randall J. C., Macromol. Chem. Phys., 1989, C29, 201CrossRefGoogle Scholar
  36. [36]
    Seger M. R., Maciel G. E., Anal.Chem., 2004, 76, 5734CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  • Meng Yin
    • 1
  • Zhiqiang Zhang
    • 1
  • Yujie Xiong
    • 1
  • Min Liu
    • 1
  • Yan Zhang
    • 1
  • Puke Mi
    • 1
    Email author
  1. 1.Key Laboratory for Ultrafine Materials, Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiP. R. China

Personalised recommendations