Chemical Research in Chinese Universities

, Volume 35, Issue 4, pp 636–640 | Cite as

Reduction of 4-Nitrophenol Using Ficin Capped Gold Nanoclusters as Catalyst

  • Han Wu
  • Huiwu CaiEmail author
  • Juan Qiao
  • Li QiEmail author


Conversion of nitroarenes to aminoarenes has attracted great attention in pharmaceutical industry, agricultural production, environmental protection and chemical catalysis area. In this work, ficin capped gold nanoclusters(ficin@AuNCs) were prepared for the reduction of 4-nitrophenol to 4-aminophenol. The proposed catalyst was characterized by transmission electron microscopy, dynamic light scattering, fluorescence spectra and UV-Vis spectra. With NaBH4 as the reducing agent, the reduction reaction could carry out completely within 10 min at 25 °C. Interestingly, the resultant catalyst exhibited size-related properties in the reduction, smaller ficin@AuNCs exhibited higher catalytic activity. Its present pseudo-first-order rate constant was found to be 2.95×10−3 s−1 and the catalytic activation energy was 27.7 kJ/mol. Moreover, ficin@AuNCs-based catalyst displayed good stability, heading to 4-nitrophenol conversion of 98.5%―100.0% after six consecutive cycles. It has shown a great potential in construction of unique catalysts based on AuNCs for reduction reaction.


Ficin capped gold nanocluster 4-Nitrophenol 4-Aminophenol Catalytic activation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2019_9070_MOESM1_ESM.pdf (257 kb)
Reduction of 4-nitrophenol using ficin capped gold nanoclusters as catalyst


  1. [1]
    Nandanwar S. U., Chakraborty U., Chin. J. Catal, 2012, 33, 1532CrossRefGoogle Scholar
  2. [2]
    Ansar S. M, Kitchens C. L., ACS Catal., 2016, 6, 5553CrossRefGoogle Scholar
  3. [3]
    Nay M. W., Randall C. W., King P. H., J. Water Poll. Contr. Federation, 1974, 46, 485Google Scholar
  4. [4]
    Pandy S., Mishra S. B., Carbohydr. Polm., 2014, 113, 525CrossRefGoogle Scholar
  5. [5]
    Liu S., Zhou X. L., Zhang M. M., Lu X., Qin Y. Zhang l, R, Guo Z. X., Chin. Chem. Lett., 2016, 27, 843CrossRefGoogle Scholar
  6. [6]
    Lin T. R., Wang l., Guo L. Q., Fu F. F, J. Phys. Chem. C, 2015, 119, 13658CrossRefGoogle Scholar
  7. [7]
    Gao R. l., Pan L., Li Z. W., Zhang X. W., Wang L., Zou J. J., Chin. J. Catal., 2018, 39, 664CrossRefGoogle Scholar
  8. [8]
    Rupinder K, Bonamali p., V. Appl. Catal. A: Gen., 2015, 491, 28CrossRefGoogle Scholar
  9. [9]
    Begum R., Rehan R., Farooqi Z. Butt H., Z., Ashraf S., J. Nanopart. Res., 2016, 18, 231CrossRefGoogle Scholar
  10. [10]
    Fenger R., Fertitta E., Kirmse H., Thunemann A. F., Rademann K., Phys. Chem. Chem. Phys., 2012, 14, 9343CrossRefGoogle Scholar
  11. [11]
    Liu K. W., Han L., Zhuang J. Y., Yang D. R, Mat. Sci. Eng. C: Mater., 2017, 78, 419Google Scholar
  12. [12]
    Goto S., Amano Y, Akiyama M., Bottcher C, Komatsu T., Langmuir, 2013, 29, 14293CrossRefGoogle Scholar
  13. [13]
    Yamamoto H., Yano H., Kouchi H., Obora Y, Arakawa R., Kawasaki H., Nanoscale, 2012, 4, 4148CrossRefGoogle Scholar
  14. [14]
    Devaraj K. B., Kumar R R., Prakash V., J. Agric. Food Chem., 2008, 56, 11417CrossRefGoogle Scholar
  15. [15]
    Li J., Liu C. Y, Liu Y., J. Mater. Chem., 2012, 22, 8426CrossRefGoogle Scholar
  16. [16]
    Das S. K., Dickinson C., Lafir F., Brougham D. F., Marsili E., Green Chem., 2012, 14, 1322CrossRefGoogle Scholar
  17. [17]
    Wunder S., Polzer F., Lu Y., Mei Y., Ballauff M., J. Phys. Chem. C, 2010,114, 8814Google Scholar
  18. [18]
    Pandey S., Mishra S. B., Carbohydr. Polym., 2014, 113, 525CrossRefGoogle Scholar
  19. [19]
    Zhao R X., Feng X. W., Huang D. S., Yang G. Y, Astruc D., Coodin. Chem. Rew., 2015, 287, 114CrossRefGoogle Scholar
  20. [20]
    Demirci S., Sahiner N., Water Air Soil Pollut., 2015, 226, 1CrossRefGoogle Scholar
  21. [21]
    Gupta V. K., Atar N., Yola M. L., Ustundag Z., Uzun L., Water Res., 2014, 48, 210CrossRefGoogle Scholar
  22. [22]
    Saha S., Pal A., Kundu S., Sasu S., Pal T., Langmuir, 2010, 26, 2885CrossRefGoogle Scholar
  23. [23]
    Syomin D., Wang J., Koel B., Appl. Surf. Sci., 2001, 45, L827CrossRefGoogle Scholar
  24. [24]
    Yang Q. H., Jiang H. L., Small Methods, 2018, 2, 1800216CrossRefGoogle Scholar
  25. [25]
    Pachfule P, Kandambeth S., Diaz D. D., Banerjee R., Chem. Commun., 2014, 50, 3169CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringXi’an University of Science and TechnologyXi’anP. R. China
  2. 2.Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of ChemistryChinese Academy of SciencesBeijingP. R. China
  3. 3.School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijingP. R. China

Personalised recommendations