Chemical Research in Chinese Universities

, Volume 35, Issue 4, pp 693–699 | Cite as

Syntheses, Crystal Structures, Magnetic and Near-infrared Luminescence Properties of 3d−4f Coordination Polymers Cu2Pr2, Cu2Eu2 and Cu4Tb2

  • Liangxuan Zhong
  • Mingyue Liu
  • Bowei Zhang
  • Yaqiu SunEmail author
  • Yanyan XuEmail author


Three new 3d−4f heterometallic coordination polymers(CPs), namely, [Pr2(CuL)2(nipt)3(H2O)]·2H2O (Cu2Pr2, 1), [Eu2(CuL)2(nipt)3(H2O)]·2H2O(Cu2Eu2, 2) and [Tb2(CuL)4(nipt)3]·8.3H2O(Cu4Tb2, 3)(CuL, H2L=2,3-dioxo-5,6,14,15-dibenzo-1,4,8,12-tetraazacyclo-pentadeca-7,13-dien; nipt2-=5-nitroisophthalate) were obtained by a solvothermal method and structurally characterized by single-crystal X-ray diffraction analyses, elemental analyses, Fourier transform infrared spectra and ultraviolet visible absorption spectra. In Cu2Pr2 and Cu2Eu2, μ3-bridged and μ5-bridged nipt2- ligands alternately linked three Ln3+ and five metal ions(three Ln3+ and two Cu2+ ions) to generate a 2D heterometallic framework with 3,3,4,5-connected (3.4.5)( topology. In Cu4Tb2, μ2-bridged and μ4-bridged nipt2- ligands alternately connected two Tb3+ and four metal ions(two Tb3+ and two Cu2+ ions) by carboxylating into a corrugated heterometallic 2D layer with 3-connected (63) topology. The magnetic properties of Cu2Pr2 and Cu2Eu2 were also discussed, the results show that both CPs have a weak antimagnetic interaction. Moreover, the near-infrared luminescence properties of Cu2Pr2 and Cu2Eu2 were also studied.


Heterometallic coordination polymer Crystal structure Magnetic property 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Chen T. H., Wang L., Trueblood J. V., Grassian V. H., J. Am. Chem. Soc., 2016, 138, 9646CrossRefGoogle Scholar
  2. [2]
    Bunck D. N., Dichtel W. R., Chem. Eur. J., 2013, 19, 818CrossRefGoogle Scholar
  3. [3]
    Ferrer B., Alvaro M., Baldovi H. G., Reinsch H., Stock N., Chem. Phys. Chem., 2014, 15, 924CrossRefGoogle Scholar
  4. [4]
    Ma D. Y., Li Z., Xiao J. X., Guo H. F., Liu B. L., Liu J. Q., Inorg. Chem., 2015, 54, 6719CrossRefGoogle Scholar
  5. [5]
    Hu H. C., Kang X. M., Cao C. S., Cheng P., Zhao P. B., Chem. Commun., 2015, 51(54), 10850Google Scholar
  6. [6]
    Liu W., Dai X., Xie J., Silver M. A., Zhang D., Chai Z. F., Wang S. A., ACS Appl. Mater. Interfaces, 2018, 10, 4844CrossRefGoogle Scholar
  7. [7]
    Malaestean L. L., Meliha K. A., Ellern A., Leusen J. V., Baca H. S., Kogerler P., Cryst. Growth Des., 2012, 12, 1593CrossRefGoogle Scholar
  8. [8]
    Binnemans K., Chem. Rev., 2009, 109, 4283CrossRefGoogle Scholar
  9. [9]
    Peng J. B., Zhang Q. C., Kong X. J., Zheng J. M., J. Am. Chem. Soc., 2012, 134, 3314CrossRefGoogle Scholar
  10. [10]
    Stamatatos T. C., Teat S. J., Wernsdorfer W., Christou G., Angew. Chem., Int. Ed., 2009, 48, 521CrossRefGoogle Scholar
  11. [11]
    Benelli C., Gatteschi D., Chem. Rev., 2002, 102, 2369CrossRefGoogle Scholar
  12. [12]
    Guo F. S., Chen Y. C., Liu J. L., Leng J. D., Meng Z. S., Vrabel P., Orendac M., Tong M. L., Chem. Commun., 2012, 48, 12219CrossRefGoogle Scholar
  13. [13]
    Boyer J. C., Carling C. J., Gates B. D., Branda N. R., J. Am. Chem. Soc., 2010, 132, 15766CrossRefGoogle Scholar
  14. [14]
    Trivedi E. R., Eliseeva S. V., Jankolovits J., Olmstead M. M., Petoud S., Pecoraro V. L., J. Am. Chem. Soc., 2014, 136, 1526CrossRefGoogle Scholar
  15. [15]
    Zhang Z. M., Pan L. Y., Lin W. Q., Leng J. D., Guo F. S., Chem. Commun., 2013, 49, 8081CrossRefGoogle Scholar
  16. [16]
    Kahn M. L., Lecante P., Verelst M., Mathonieìe C., Kahn O., Chem. Mater., 2000, 12, 3073CrossRefGoogle Scholar
  17. [17]
    Sun Y. Q., Wang J., Fan L. L., Gao D. Z., Chem. Res. Chinese Universities, 2009, 25(2), 279Google Scholar
  18. [18]
    Sun Y. Q., Xu Y. Y., Gao D. Z., Zhang G. Y., Liu Y. X., Wang J., Liao D. Z., Dalton Tran., 2012, 41, 5704CrossRefGoogle Scholar
  19. [19]
    Xin N., Sun Y. Q., Zheng Y. F., Gao D. Z., Zhang G. Y., J. Solid State Chem., 2016, 243, 267CrossRefGoogle Scholar
  20. [20]
    Black D. S. C., Corrie H., Inorg. Nucl. Chem. Lett., 1976, 12, 65CrossRefGoogle Scholar
  21. [21]
    Nakamoto K., Infrared, Raman Spectra of Inorganic and Coordination Compounds, 5th Ed., John Wiley, New York, 1997 Google Scholar
  22. [22]
    Lampeka Y. D., Gavrish S. P., Polyhedron, 2000, 19, 2533CrossRefGoogle Scholar
  23. [23]
    Chorazy S., Sieklucka B., Ohkoshi S. I., Cryst. Growth Des., 2016, 16, 4918CrossRefGoogle Scholar
  24. [24]
    Chorazy S., Arczynski M., Nakabayashi K., Sieklucha B., Ohkoshi S. I., Inorg. Chem., 2015, 54, 4724CrossRefGoogle Scholar
  25. [25]
    Trivedi E. R., Eliseeva S. V., Jankolovits J., Olmstead M. M., Petoud S., Pecoraro V. L., J. Am. Chem. Soc., 2014, 136, 1526CrossRefGoogle Scholar
  26. [26]
    Aboshyan-Sorgho L., Nozary H., Aebischer A., Bünzli J. C. G., Morgantini P. Y., Kittilstved K. R., Hauser A., Eliseeva S. V., Petoud S., Piguet C., J. Am. Chem. Soc., 2012, 134, 12675CrossRefGoogle Scholar
  27. [27]
    Kahn O., Molecular Magnetism, VCH, New York, 1993 Google Scholar
  28. [28]
    Xu J. X., Ma Y., Liao D. Z., Xu G. F., Tang J. K., Wang C., Zhou N., Yan S. P., Cheng P., Li L. C., Inorg. Chem., 2009, 48, 8890CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  1. 1.Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of ChemistryTianjin Normal UniversityTianjinP. R. China
  2. 2.Key Laboratory of Advanced Energy Materials Chemistry, Ministry of EducationNankai UniversityTianjinP. R. China

Personalised recommendations