Chemical Research in Chinese Universities

, Volume 35, Issue 4, pp 641–646 | Cite as

Enhanced Corrosion Resistance and Discharge Performance of Mg-MnO2 Battery by Na2SiO3 Additive

  • Jing XuEmail author
  • Jie Hu
  • Sibo Hu


Corrosion resistance and delayed action are major obstacles that severely limit the practical application of Mg alloy in battery fields. In this work, the effects of Na2SiO3 on the electrochemical behavior of the AZ31B Mg alloy in MgSO4-Mg(NO3)2 composite solution[0.14 mol/L MgSO4, 1.86 mol/L Mg(NO3)2] were investigated. Electrochemical tests were carried out using electrochemical impedance spectroscopy, galvanostatic discharge, and linear sweep voltammograms. The results indicate that the impedance value increases by nearly fourfold, and the delayed time decreases from 2.1 s to 0.6 s. Battery performance test reveals that the addition of Na2SiO3 significantly improves the discharge specific capacity of Mg-MnO2. The surface morphology and composition of corrosion products from Mg alloys were studied by scanning electron microscopy(SEM) and Fourier transform infrared spectroscopy( FTIR), respectively. The SEM images of the AZ31B Mg alloys in composite solution with or without Na2SiO3 additive have an evident distinction due to the formation of new insoluble compound. FTIR result confirms that the corrosion products accumulated on the alloy surface in the electrolyte containing Na2SiO3 are mainly composed of Mg(OH)2, MgCO3, and MgSiO3.


Mg-MnO2 battery Na2SiO3 Corrosion resistance Delayed action Discharge capacity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    El-Taib Heakal F., Fekry A. M., Abd El-Barr Jibril M., Corr. Sci., 2011, 53, 1174CrossRefGoogle Scholar
  2. [2]
    Song G. L., Electrochimica. Acta, 2010, 55, 2258CrossRefGoogle Scholar
  3. [3]
    Shi Z. M., Song G. L., Atrens A., Corros. Sci., 2006, 48, 1939CrossRefGoogle Scholar
  4. [4]
    Friedrich H., Schumann S., J. Mater. Process. Tech., 2001, 117, 276CrossRefGoogle Scholar
  5. [5]
    Lin B. L., Lu J. T., Kong G., Liu J., Trans. Nonferr. Met. Soc. China, 2007, 17, 755CrossRefGoogle Scholar
  6. [6]
    Walker D. E., Wilcox G. D., Trans. Inst. Met. Finish., 2008, 86, 251CrossRefGoogle Scholar
  7. [7]
    Gireesh V. S., Shibli S. M. A., Corros. Prev. Control., 2001, 48, 11Google Scholar
  8. [8]
    Zhao F., Liao A. D., Zhang R. F., Zhang S. F., Wang H. X., Shi X. M., Li M. J., He X. M., Trans. Nonferrous Metals Soc. China, 2010, 20, 683CrossRefGoogle Scholar
  9. [9]
    van Phuong N., Moon S., Chang D., Lee K. H., Appl. Surf. Sci., 2013, 264, 70CrossRefGoogle Scholar
  10. [10]
    Chen M. A., Cheng N., Ou Y. C., Li J. M., Surf. Coat. Technol., 2013, 232, 726CrossRefGoogle Scholar
  11. [11]
    Zhou M., Pang X., Wei L., Gao K., Appl. Surf. Sci., 2015, 337, 172CrossRefGoogle Scholar
  12. [12]
    Forero López A. D., Lehr I. L., Saidman S. B., J. Alloys Compd., 2017, 702, 338CrossRefGoogle Scholar
  13. [13]
    Cui X. J., Li M. T., Yang R. S., Yu Z. X., Appl. Surf. Sci., 2016, 363, 91CrossRefGoogle Scholar
  14. [14]
    Xu J., Yang Q. L., Huang C. L., Muhammad S. J., Muhammad K. A., Chen C. G., J. Appl. Electrochem., 2017, 8, 1Google Scholar
  15. [15]
    Udhayan R., Bhatt D. P., J. Power Sources, 1992, 39, 107CrossRefGoogle Scholar
  16. [16]
    Chen L., Chen C. G., Wang N. N., Wang J. M., Deng L., Rare. Metal. Mat. Eng., 2015, 44, 333CrossRefGoogle Scholar
  17. [17]
    Liang J., Hu L., Hao J., Appl. Surf. Sci., 2007, 253, 4490CrossRefGoogle Scholar
  18. [18]
    Haruto F., Yasumichi M., Corr. Sci., 2004, 46, 2135CrossRefGoogle Scholar
  19. [19]
    Lehrman L., Shuldener H. L., Ind. Eng. Chem., 1952, 44, 1765CrossRefGoogle Scholar
  20. [20]
    Yang X., Roonasi P., Holmgren A., Colloid Interface Sci., 2008, 328, 41CrossRefGoogle Scholar
  21. [21]
    Salami B., Afshar A., Mazaheri A., J. Magnesium Alloy, 2014, 2, 72CrossRefGoogle Scholar
  22. [22]
    Gao H., Li Q., Chen F. N., Dai Y., Luo F., Li L.Q., Corr. Sci., 2011, 53, 1401CrossRefGoogle Scholar
  23. [23]
    Li W. P., Zhu L. Q., Liu H. C., Surf. Coat. Technol., 2006, 201, 2505CrossRefGoogle Scholar
  24. [24]
    Xu J., Yang Q. L., Javed M. S., Gong Y. L., Aslam M. K., Chen C. G., RSC Adv., 2017, 7, 5880CrossRefGoogle Scholar
  25. [25]
    Song G. L., Atrens A., Adv. Eng. Mater., 2003, 5, 837CrossRefGoogle Scholar
  26. [26]
    Zhao J., Yu K., Hu Y. N., Li S. J., Tan X., Chen F. W., Yu Z. M., Electrochimica Acta, 2011, 56, 8224CrossRefGoogle Scholar
  27. [27]
    Ge Y. F., Jiang B. L., Shi H. Y., Chin. J. Nonferrous. Met., 2013, 23, 950Google Scholar
  28. [28]
    Shi C. F., Li Y. M., Feng H. Y., Jia S. M., Xue R. J., Li G., Wang G. X., Chem. Res. Chinese Universities, 2017, 34(1), 39CrossRefGoogle Scholar
  29. [29]
    Jović V. D., Chem. Biochem. Eng. Q., 2009, 23, 11Google Scholar
  30. [30]
    Ge Y. F., Jiang B. L., Shi H. Y., Chin. J. Nonferrous. Met., 2013, 23, 950Google Scholar
  31. [31]
    Wang N. G., Wang R. C., Peng C. Q., Peng B. Feng Y., Hu C. W., J. Mater. Eng. Perf., 2014, 23, 4374CrossRefGoogle Scholar
  32. [32]
    Huo H. W., Ying L., Wang F. H., Corrosion Sci., 2004, 46, 1467CrossRefGoogle Scholar
  33. [33]
    Deyab M. A., J. Power Sources, 2016, 325, 98CrossRefGoogle Scholar
  34. [34]
    Baril G., Pebere N., Corrosion Sci., 2001, 43, 471CrossRefGoogle Scholar
  35. [35]
    Yang Q. L., Xu J., Chen L., Gong Y. L., Sun X. Z., Chen C. G., J. Electrochem. Soc., 2017, 164, A630CrossRefGoogle Scholar
  36. [36]
    Al-Abadleh H. A., Grassian V. H., J. Phys. Chem. B, 2003, 107, 10829CrossRefGoogle Scholar
  37. [37]
    Fu X. W., Liu Y., Liu Z., Dong N., Zhao T. Y., Zhao D., Lian G., Wang Q. L., Cui D. L., Chem. Res. Chinese Universities, 2018, 34(1), 95CrossRefGoogle Scholar
  38. [38]
    Ali I. M., Kotp Y. H., Elnaggar I. M., Desalination, 2010, 259, 228CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringXinyang Normal UniversityXinyangP. R. China
  2. 2.College of Environment and Quality InspectionChongqing Chemical Industry Vocational CollegeChongqingP. R. China

Personalised recommendations