Advertisement

Chemical Research in Chinese Universities

, Volume 35, Issue 4, pp 654–661 | Cite as

Impregnated Sulfur in Carbonized Nitrogen-containing Porous Organic Frameworks as Cathode with High Rate Performance and Long Cycle Life for Lithium-sulfur Batteries

  • Yan Dong
  • Teng BenEmail author
Article
  • 27 Downloads

Abstract

The undesirable cycling performance caused by soluble polysulfides shuttling between anode and cathode has been considered as the main challenge that has hindered its practical applications for lithium-sulfur(Li-S) batteries. To solve this issue effectively, a nitrogen-containing porous carbon, namely JUC-Z2-900, developed from a porous organic framework, namely JUC-Z2, bearing a high surface area(805 m2/g), small pore size(0.5 nm) and nitrogen doping(2.15%, mass fraction), has been used as a host material for Li-S batteries. The micropores of JUC-Z2-900 can confine the smaller sulfur molecules S2–4, which can essentially alleviate the critical problem of polysulfide dissolution. Furthermore, nitrogen-containing JUC-Z2-900 can promote chemical adsorption of sulfur. The above two factors can improve the electrochemical performance of Li-S batteries effectively. To compare the effects of sulfur contents and melt-diffusion strategy in JUC-Z2-900/S composites, a series of JUC-Z2-900/S composites was synthesized and their electrochemical performances were explored, indicating good rate performance and excellent cycling stability of the composites contributed by both appropriate mass percentage of sulfur and its confinement in the micropores.

Keywords

Li-S battery Nitrogen-containing porous carbon Porous organic framework 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2019_9038_MOESM1_ESM.pdf (682 kb)
Impregnated sulfur in carbonized nitrogen-containing porous organic frameworks (JUC-Z2) as cathode with high rate performance and long cycle life for lithium-sulfur batteries

References

  1. [1]
    Bruce P. G., Freunberger S. A., Hardwick L. J., Tarascon J. M., Nat. Mater., 2012, 11, 19CrossRefGoogle Scholar
  2. [2]
    Zhou G., Zhao Y., Manthiram A., Adv. Energy Mater., 2015, 5, 1402263CrossRefGoogle Scholar
  3. [3]
    Manthiram A., Fu Y., Chung S. H., Zu C., Su Y. S., Chem. Rev., 2014, 114, 11751CrossRefGoogle Scholar
  4. [4]
    Cakan R. D., Morcrette M., Nouar F., Davoisne C., Devic T., Gonbeau D., Dominko R., Serre C., Férey G., Tarascon J. M., J. Am. Chem. Soc., 2011, 133, 16154CrossRefGoogle Scholar
  5. [5]
    Meng X. B., Gao Q. M., Chem. J. Chinese Universities, 2014, 35(8), 1715Google Scholar
  6. [6]
    Seh Z. W., Li W., Cha J. J., Zheng G., Yang Y., McDowell M. T., Chun P., Cui Y., Nat. Commun., 2013, 4, 1331CrossRefGoogle Scholar
  7. [7]
    Ji X., Evers S., Black R., Nazar L. F., Nat. Commun., 2011, 2, 325CrossRefGoogle Scholar
  8. [8]
    Liang X., Hart C., Pang Q., Garsuch A., Weiss T., Nazar L. F., Nat. Commun., 2015, 6, 5682CrossRefGoogle Scholar
  9. [9]
    Jiang J., Zhu J., Ai W., Wang X., Wang Y., Zou C., Huang W., Yu T., Nat. Commun., 2015, 6, 8622CrossRefGoogle Scholar
  10. [10]
    Xiao L., Cao Y., Xiao J., Schwenzer B., Engelhard M. H., Saraf L. V., Nie Z., Exarhos G. J., Liu J., Adv. Mater., 2012, 24, 1176CrossRefGoogle Scholar
  11. [11]
    Fu Y., Manthiram A., J. Phys. Chem. C, 2012, 116, 8910CrossRefGoogle Scholar
  12. [12]
    Liao H., Ding H., Li B., Ai X., Wang C., J. Mater. Chem. A, 2014, 2, 8854CrossRefGoogle Scholar
  13. [13]
    Yang X., Dong B., Zhang H., Ge R., Gao Y., Zhang H., RSC Adv., 2015, 5, 86137CrossRefGoogle Scholar
  14. [14]
    Guo B., Ben T., Bi Z., Veith G. M., Sun X. G., Qiu S., Dai S., Chem. Commun., 2013, 49, 4905CrossRefGoogle Scholar
  15. [15]
    Ben T., Shi K., Cui Y., Pei C., Zuo Y., Guo H., Zhang D., Xu J., Deng F., Tian Z., Qiu S., J. Mater. Chem., 2011, 21, 18208CrossRefGoogle Scholar
  16. [16]
    Li Z., Yuan L., Yi Z., Sun Y., Liu Y., Jiang Y., Shen Y., Xin Y., Zhang Z., Huang Y., Adv. Energy Mater., 2014, 4, 1301473CrossRefGoogle Scholar
  17. [17]
    Tao X., Chen X., Xia Y., Huang H., Gan Y., Wu R., Chen F., Zhang W., J. Mater. Chem. A, 2013, 1, 3295CrossRefGoogle Scholar
  18. [18]
    Zheng G., Yang Y., Cha J. J., Hong S. S., Cui Y., Nano. Lett., 2011, 11, 4462CrossRefGoogle Scholar
  19. [19]
    Zhang Z., Li Z., Hao F., Wang X., Li Q., Qi Y., Fan R., Yin L., Adv. Funct. Mater., 2014, 24, 2500CrossRefGoogle Scholar
  20. [20]
    Yin L., Wang J., Lin F., Yang J., Nuli Y., Energy Environ. Sci., 2012, 5, 6966CrossRefGoogle Scholar
  21. [21]
    Xin S., Gu L., Zhao N. H., Yin Y. X., Zhou L. J., Guo Y. G., Wan L. J., J. Am. Chem. Soc., 2012, 134, 18510CrossRefGoogle Scholar
  22. [22]
    Song J., Xu T., Gordin M. L., Zhu P., Lv D., Jiang Y. B., Chen Y., Duan Y., Wang D., Adv. Funct. Mater., 2014, 24, 1243CrossRefGoogle Scholar
  23. [23]
    Pang Q., Tang J., Huang H., Liang X., Hart C., Tam K. C., Nazar L. F., Adv. Mater., 2015, 27, 6021CrossRefGoogle Scholar
  24. [24]
    Niu S., Lv W., Zhou G., He Y., Li B., Yang Q. H., Kang F., Chem. Commun., 2015, 51, 17720CrossRefGoogle Scholar
  25. [25]
    Lu W. J., Huang S. Z., Miao L., Liu M. X., Zhu D. Z., Li L. C., Duan H., Xu Z. J., Gan L. H., Chinese Chem. Lett., 2017, 28, 1324CrossRefGoogle Scholar
  26. [26]
    Zhao Y., Liu M., Gan L., Ma X., Zhu D., Xu Z., Chen L. Energy & Fuels, 2014, 28, 1561CrossRefGoogle Scholar
  27. [27]
    Song Z., Zhu D., Li L., Chen T., Duan H., Wang Z., Lv Y., Xiong W., Liu M., Gan L., J. Mater. Chem. A, 2019, 7, 1177CrossRefGoogle Scholar
  28. [28]
    Song Z., Li L., Zhu D., Miao L., Duan H., Wang Z., Xiong W., Lv Y., Liu M., Gan L., J. Mater. Chem. A, 2019, 7, 816CrossRefGoogle Scholar
  29. [29]
    Xue D., Zhu D., Liu M., Duan H., Li L., Chai X., Wang Z., Lv Y., Xiong W., Gan L., ACS Appl. Nano Mater., 2018, 1, 4998CrossRefGoogle Scholar
  30. [30]
    Li Y., Ben T., Qiu S., Acta Chim. Sinica, 2015, 73, 605CrossRefGoogle Scholar
  31. [31]
    Qiu Y., Li W., Zhao W., Li G., Hou Y., Liu M., Zhou L., Ye F., Li H., Wei Z., Yang S., Duan W., Ye Y., Guo J., Zhang Y., Nano Lett., 2014, 14, 4821CrossRefGoogle Scholar
  32. [32]
    Zhang J., Cai Y., Zhong Q., Lai D., Yao J., Nanoscale, 2015, 7, 17791CrossRefGoogle Scholar
  33. [33]
    Mao Y., Duan H., Xu B., Zhang L., Hu Y., Zhao C., Wang Z., Chen L., Yang Y., Energy Environ. Sci., 2012, 5, 7950CrossRefGoogle Scholar
  34. [34]
    Jayaprakash N., Shen J., Moganty S. S., Corona A., Archer L. A., Angew. Chem. Int. Ed., 2011, 50, 5904CrossRefGoogle Scholar
  35. [35]
    Ji L., Rao M., Zheng H., Zhang L., Li Y., Duan W., Guo J., Cairns E. J., Zhang Y., J. Am. Chem. Soc., 2011, 133, 18522CrossRefGoogle Scholar
  36. [36]
    Liang C., Dudney N. J., Howe J. Y., Chem. Mater., 2009, 21, 4724CrossRefGoogle Scholar
  37. [37]
    Sun D., Yang J., Yan X., Chem. Commun., 2015, 51, 2134CrossRefGoogle Scholar
  38. [38]
    Yu M., Li R., Tong Y., Li Y., Li C., Hong J. D., Shi G., J. Mater. Chem. A, 2015, 3, 9609CrossRefGoogle Scholar
  39. [39]
    Han K., Shen J., Hao S., Ye H., Wolverton C., Kung M. C., Kung H. H., ChemSusChem, 2014, 7, 2545CrossRefGoogle Scholar
  40. [40]
    Sun H., Xu G. L., Xu Y. F., Sun S. G., Zhang X., Qiu Y., Yang S., Nano Res., 2012, 5, 726CrossRefGoogle Scholar
  41. [41]
    Zhang B., Qin X., Li G. R., Gao X. P., Energy Environ. Sci., 2010, 3, 1531CrossRefGoogle Scholar
  42. [42]
    Chen R., Zhao T., Lu J., Wu F., Li L., Chen J., Tan G., Ye Y., Amine K., Nano Lett., 2013, 13, 4642CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  1. 1.Department of ChemistryJilin UniversityChangchunP. R. China
  2. 2.Department of BioengineeringZunyi Medical University(Zhuhai Campus)ZhuhaiP. R. China

Personalised recommendations