Advertisement

Enhancement of Bio-based para-Xylene Selectivity in Catalytic Fast Pyrolysis of Cellulose Using a Surface-modified Mg/P/HZSM-5 Catalyst

  • Yulan Wang
  • Minghui Fan
  • Lijuan Zhu
  • Shengfei Wang
  • Yuting He
  • Quanxin LiEmail author
Article
  • 9 Downloads

Abstract

With the growing consumption of oil, the production of p-xylene(PX) from renewable biomass has gained significant attention recently. This work demonstrated that cellulose, a main component in lignocellulosic biomass, was directly converted into PX over the Mg/P surface-modified zeolites. The catalysts modified by the incorporation of P2O5 and MgO into HZSM-5(HZ) promoted the isomerization of m-/o-xylenes to p-xylene. The PX selectivity was greatly enhanced using the modified zeolites due to the deactivation of external surface and the adjustment of pore entrance. In addition, the addition of methanol to cellulose was beneficial to increase the selectivity of xylenes due to the alkylation reactions and the Diels-Alder reactions between cellulose-derived furans and methanol-derived olefins. The highest PX yield of 10.7%(molar fraction) with a high PX selectivity in xylenes(97.1%) was obtained over the 10%Mg/5%P/HZ catalyst. The reaction pathway for the formation of p-xylene was addressed according to the study of the key reactions and the characterization of catalysts.

Keywords

Cellulose p-Xylene Diels-Alder reaction Isomerization Alkylation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Stocker M., Angew. Chem. Int. Ed., 2008, 47(48), 9200CrossRefGoogle Scholar
  2. [2]
    Jiang P. W., Wu X. P., Zhu L. J., Jin F., Liu J. X., Xia T. Y., Wang T. J., Li Q. X., Energy Conversion and Management, 2016, 120, 338CrossRefGoogle Scholar
  3. [3]
    Binder J. B., Raines R. T., J. Am. Chem. Soc., 2009, 131(5), 1979CrossRefGoogle Scholar
  4. [4]
    Liu J. X., Jin F., Fan M. H., Zhu L. J., Tang C., Chang R., Jia Q. F., Li Q. X., Fuel, 2018, 226, 322CrossRefGoogle Scholar
  5. [5]
    Wang K. G., Kim K. H., Brown R. C., Green Chem., 2014, 16(2), 727CrossRefGoogle Scholar
  6. [6]
    Mihalcik D. J., Mullen C. A., Boateng A. A., J. Anal. Appl. Pyrolysis, 2011, 92(1), 224CrossRefGoogle Scholar
  7. [7]
    Wang S. R., Ru B., Lin H. Z., Sun W. X., Yu C. J., Luo Z. Y., Chem. Res. Chinese Universities., 2014, 30(5), 848CrossRefGoogle Scholar
  8. [8]
    Carlson T. R., Tompsett G. A., Conner W. C., Huber G. W., Top. Catal., 2009, 52(3), 241CrossRefGoogle Scholar
  9. [9]
    Chang R., Zhu L. J., Jin F., Fan M. H., Liu J. X., Jia Q. F., Tang C., Li Q. X., J. Chem. Technol. Biotechnol., 2018, 93(11), 3292CrossRefGoogle Scholar
  10. [10]
    Xu L. J., Yao Q., Deng J., Han Z., Zhang Y., Fu Y., Huber G. W., Guo Q. X., ACS Sustain. Chem. Eng., 2015, 3(11), 2890CrossRefGoogle Scholar
  11. [11]
    Li X. Y., Zhang H. F., Li J., Su L., Zuo J. E., Komarneni S., Wang Y. J., Appl. Catal. A: Gen., 2013, 455, 114CrossRefGoogle Scholar
  12. [12]
    Cheng Y. T., Wang Z. P., Gilbert C. J., Fan W., Huber G. W., Angew. Chem. Int. Ed., 2012, 51(44), 11097CrossRefGoogle Scholar
  13. [13]
    Cheng Y. T., Jae J., Shi J., Fan W., Huber G. W., Angew. Chem. Int. Ed., 2012, 51(6), 1387CrossRefGoogle Scholar
  14. [14]
    Ashraf M. T., Chebbi R., Darwish N. A., Ind. Eng. Chem. Res., 2013, 52(38), 13730CrossRefGoogle Scholar
  15. [15]
    Pang J. F., Zheng M. Y., Sun R. Y., Wang A. Q., Wang X. D., Zhang T., Green Chem., 2016, 18(2), 342CrossRefGoogle Scholar
  16. [16]
    Maneffa A., Priecel P., Lopez-Sanchez J. A., ChemSusChem, 2016, 9(19), 2736CrossRefGoogle Scholar
  17. [17]
    Chang C. C., Cho H. J., Yu J. Y., Gorte R. J., Gulbinski J., Dauenhauer P., Fan W., Green Chem., 2016, 18(5), 1368CrossRefGoogle Scholar
  18. [18]
    Williams C. L., Chang C. C., Do P., Nikbin N., Caratzoulas S., Vlachos D. G., Lobo R. F., Fan W., Dauenhauer P. J., ACS Catal., 2012, 2(6), 935CrossRefGoogle Scholar
  19. [19]
    Do P. T. M., McAtee J. R., Watson D. A., Lobo R. F., ACS Catal., 2013, 3(1), 41CrossRefGoogle Scholar
  20. [20]
    Chang C. C., Green S. K., Williams C. L., Dauenhauer P. J., Fan W., Green Chem., 2014, 16(2), 585CrossRefGoogle Scholar
  21. [21]
    Tang C., Zhu L. J., Fan M. H., Li Q. X., Chin. J. Chem. Phys., 2018, 31(6), 843CrossRefGoogle Scholar
  22. [22]
    Jin F., Fan M. H., Jia Q. F., Li Q. X., Chin. J. Chem. Phys., 2017, 30(3), 348CrossRefGoogle Scholar
  23. [23]
    Zhang J. G., Qian W. Z., Kong C. Y., Wei F., ACS Catal., 2015, 5(5), 2982CrossRefGoogle Scholar
  24. [24]
    Wu X. P., Jiang P. W., Jin F., Liu J. X., Zhang Y. H., Zhu L. J., Xia T. Y., Shao K. L., Wang T. J., Li Q. X., Fuel, 2017, 188, 205CrossRefGoogle Scholar
  25. [25]
    Wu X. P., Fan M. H., Li Q. X., Chin. J. Chem. Phys., 2017, 30(4), 479CrossRefGoogle Scholar
  26. [26]
    Zhu L. J., Jin F., Fan M. H., Liu J. X., Chang R., Jia Q. F., Tang C., Li Q. X., Chem. Eng. Technol., 2018, 41(5), 1027CrossRefGoogle Scholar
  27. [27]
    Zhang Y. H., Fan M. H., Chang R., Li Q. X., Chin. J. Chem. Phys., 2017, 30(5), 588CrossRefGoogle Scholar
  28. [28]
    Fan M. H., Ge S. L., Zhang Z., Xie Y. S., Li Q. X., Chin. J. Chem. Phys., 2018, 31(5), 725CrossRefGoogle Scholar
  29. [29]
    Lu J. H., Zhou S., Ma K., Meng M., Tian Y., Chin. J. Catal., 2015, 36(8), 1295CrossRefGoogle Scholar
  30. [30]
    Yu X., Zhang Y. W., Liu B., Ma H. Y., Wang Y., Bao Q., Wang Z. L., Chem. Res. Chinese Universities, 2018, 34(3), 485CrossRefGoogle Scholar
  31. [31]
    Mao D. S., Yang W. M., Xia J. C., Zhang B., Song Q. Y., Chen Q. L., J. Catal., 2005, 230(1), 140CrossRefGoogle Scholar
  32. [32]
    Jia Q. F., Zhu L. J., Fan M. H., Li Q. X., Chin. J. Org. Chem., 2018, 38(8), 2101CrossRefGoogle Scholar
  33. [33]
    Zhou G. Q., Li J., Yu Y. Q., Li X. Y., Wang Y. J., Wang W., Komarneni S., Appl. Catal. A: Gen., 2014, 487, 45CrossRefGoogle Scholar
  34. [34]
    Dorado C., Mullen C. A., Boateng A. A., Appl. Catal. B: Environ., 2015, 162, 338CrossRefGoogle Scholar
  35. [35]
    Cheng Y. T., Huber G. W., Green Chem., 2012, 14(11), 3114CrossRefGoogle Scholar
  36. [36]
    Mettler M. S., Vlachos D. G., Dauenhauer P. J., Energy Environ. Sci., 2012, 5(7), 7797CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  • Yulan Wang
    • 1
  • Minghui Fan
    • 1
  • Lijuan Zhu
    • 1
  • Shengfei Wang
    • 1
  • Yuting He
    • 1
  • Quanxin Li
    • 1
    Email author
  1. 1.Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, Chinese Academy of Sciences, Anhui Key Laboratory of Biomass Clean EnergyUniversity of Science & Technology of ChinaHefeiP. R. China

Personalised recommendations