Advertisement

Chemical Research in Chinese Universities

, Volume 35, Issue 4, pp 662–666 | Cite as

In-situ Reduction Synthesis of Bi/BiOI Heterostructure Films with High Photoelectrochemical Activity

  • Yanfei Liu
  • Yu Chu
  • Zhuoyang Du
  • Yan Sun
  • Feng CaoEmail author
Article
  • 24 Downloads

Abstract

The Bi/BiOI heterostructure films grew perpendicular to the FTO substrates were synthesized in-situ through an electrochemical deposition and hydrogen reduction method. The metallic Bi nanoparticles were decorated onto the surface of BiOI nanosheets via an in-situ reduction, induced 6.3 times improvement of photocurrent density, compared to the pristine BiOI at 1.23 V vs. reversible hydrogen electrode(RHE). The enhancement of photoelectrochemical performance was attributed not only to the efficient separation of charge resulted from surface plasmon resonance effect, but also to the fast charge transfer at the interface due to the in-situ reduction of the films. This work provided a simple and facile strategy to in-situ construct heterostructure films, and showed an effective method to improve the photoelectrochemical activity of Bi-based semiconductors.

Keywords

Photoelectrochemical BiOI film In-situ reduction Surface plasmon resonance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Dong L., Feng Y., Wang L., Feng W., Chem. Soc. Rev., 2018, 47, 7339CrossRefGoogle Scholar
  2. [2]
    Li S., Cai J., Liu Y., Gao M., Cao F., Qin G., Sol. Energy Mater. Sol. Cells, 2018, 179, 328CrossRefGoogle Scholar
  3. [3]
    Wang L., Li Q., Chem. Soc. Rev., 2018, 47, 1044CrossRefGoogle Scholar
  4. [4]
    He R., Xu D., Cheng B., Yu J., Ho W., Nanoscale Horiz., 2018, 3, 464CrossRefGoogle Scholar
  5. [5]
    Islam M. J., Kim H. K., Reddy D. A., Kim Y., Ma R., Baek H., Kim J., Kim T. K., Dalton Trans., 2017, 46, 6013CrossRefGoogle Scholar
  6. [6]
    Cao F., Wang J., Li S., Cai J., Tu W., Lv X., Qin G., J. Alloy Compd., 2015, 639, 445CrossRefGoogle Scholar
  7. [7]
    Wang S., Yan X., Zhu Y., Deng D., He H., Luo L., Chem. Res. Chinese Universities, 2018, 34(5), 701Google Scholar
  8. [8]
    Wang J., Wang Y., Liu Y., Lv X., Li S., Zhou J., Cao F., Qins G., Chem. Res. Chinese Universities, 2016, 32(3), 338CrossRefGoogle Scholar
  9. [9]
    Yu L., Zhang Y., He J., Zhu H., Zhou X., Li M., Yang Q., Xu F., J. Alloy Compd., 2018, 753, 601CrossRefGoogle Scholar
  10. [10]
    Luo Z., Li C., Liu S., Wang T., Gong J., Chem. Sci., 2017, 8, 91CrossRefGoogle Scholar
  11. [11]
    Lu Z., Song W., Ouyang C., Wang H., Zeng D., Xie C., RSC Adv., 2017, 53, 33552CrossRefGoogle Scholar
  12. [12]
    Jiao Z., Shang M., Liu J., Lu G., Wang X., Bi Y., Nano Energy, 2017, 31, 96CrossRefGoogle Scholar
  13. [13]
    Huang Y., Kang S., Yang Y., Qin H., Ni Z., Yang S., Li X., Appl. Catal. B, 2016, 196, 89CrossRefGoogle Scholar
  14. [14]
    Guo W., Liu H., Chem. Res. Chinese Universities, 2017, 33(1), 129CrossRefGoogle Scholar
  15. [15]
    Dong F., Zhao Z., Sun Y., Zhang Y., Yan S., Wu Z., Environ. Sci. Technol., 2015, 49, 12432CrossRefGoogle Scholar
  16. [16]
    Dong F., Li Q., Sun Y., Ho W. K., ACS Catal., 2014, 4, 4341CrossRefGoogle Scholar
  17. [17]
    Hu J., Xu G., Wang J., Lv J., Zhang X., Zheng Z., Xie T., Wu Y., New J. Chem., 2014, 38, 4913CrossRefGoogle Scholar
  18. [18]
    Zhu Q. L., Song F. Z., Wang Q. J., Tsumori N., Himeda Y., Autrey T., Xu Q., J. Mater. Chem. A, 2018, 6, 5544CrossRefGoogle Scholar
  19. [19]
    Dong Z., Wu M., Wu J., Ma Y., Ma Z., Dalton Trans., 2015, 44, 11901CrossRefGoogle Scholar
  20. [20]
    Liao Z., Lan Y., Wang K., Lei M., Liao Y., Mao H., Ma J., Zhao S., Chem. Res. Chinese Universities, 2018, 34(1), 85Google Scholar
  21. [21]
    Jia Q., Zhang S., Gao Z., Yang P., Gu Q., Catal. Sci. Technol., 2019, 9, 425CrossRefGoogle Scholar
  22. [22]
    Ma H., Mahadik M. A., Park J. W., Kumar M., Chung H. S., Chae W. S., Kong G. W., Lee H. H., Choi S. H., Jang J. S., Nanoscale, 2018, 10, 22560CrossRefGoogle Scholar
  23. [23]
    Xiao S., Ouyang Y., Li X., Wang Z., Wu P., Deng Z., Chen L., Su B., Chem. J. Chinese Universities, 2018, 39(6), 1235Google Scholar
  24. [24]
    Huang Y., Long B., Li H., Balogun M. S., Rui Z., Tong Y., Ji H., Adv. Mater. Interfaces, 2015, 2, 1500249CrossRefGoogle Scholar
  25. [25]
    Yan P., Xu L., Cheng X., Qian J., Li H., Xia J., Zhang Q., Hua M., Li H., J. Electro. Chem., 2017, 804, 64CrossRefGoogle Scholar
  26. [26]
    Zhu G., Hojamberdiev M., Zhang S., Din S. T. U., Yang W., Applied Surface Science, 2019, 467, 968CrossRefGoogle Scholar
  27. [27]
    Bhachu D. S., Moniz S. J. A., Sathasivam S., Scanlon D. O., Walsh A., Bawaked S. M., Mokhtar M., Obaid A. Y., Parkin I. P., Tang J., Carmalt C. J., Chem. Sci., 2016, 7, 4832CrossRefGoogle Scholar
  28. [28]
    Li Q., Gao S., Hu J., Wang H., Wu Z., Catal. Sci. Technol., 2018, 8, 5270CrossRefGoogle Scholar
  29. [29]
    Yu Y., Cao C., Liu H., Li P., Wei F., Jiang Y., Song W., J. Mater. Chem. A, 2014, 2, 1677CrossRefGoogle Scholar
  30. [30]
    Zhang W., Wang Z., Shen Y., Xi M., Chu X., Xi C., Chem. Res. Chinese Universities, 2015, 31(6), 1007CrossRefGoogle Scholar
  31. [31]
    Atwater H. A., Polman A., Nat. Mater., 2010, 9, 205CrossRefGoogle Scholar
  32. [32]
    Cheng H., Huang B., Wang P., Wang Z., Lou Z., Wang J., Qin X., Zhang X., Dai Y., Chem. Commun., 2011, 47, 7054CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  • Yanfei Liu
    • 1
  • Yu Chu
    • 1
  • Zhuoyang Du
    • 1
  • Yan Sun
    • 1
  • Feng Cao
    • 1
    Email author
  1. 1.Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and EngineeringNortheastern UniversityShenyangP. R. China

Personalised recommendations