Advertisement

Chemical Research in Chinese Universities

, Volume 35, Issue 4, pp 700–707 | Cite as

Studies on Surface Properties and Cell Adhesion Properties of BSA Modified DBM Scaffold

  • Mengjie Sun
  • Wei Feng
  • Bowei Wang
  • Bing Han
  • Jundong Zou
  • Chunying Yang
  • Zhihui LiuEmail author
Article
  • 12 Downloads

Abstract

As a scaffold material for bone tissue engineering, demineralized bone matrix(DBM) has such a limited ability to load cells and growth factors that the surface of the DBM scaffold was modified with bovine serum albumin( BSA) with different concentrations to improve the protein structure and physicochemical properties of the scaffold surface so as to enhance the adhesion of the cells. And the appropriate BSA concentration was explored. Compared with DBM, the scaffold with BSA coating had a smaller pore size and a lower porosity, also, the degradation rate was accelerated and the hydrophilic property was improved. Cells adhesion was observed inside the DBM sca ffold before and after it had been modified, and the BSA modified scaffold had a good cell compatibility. When the concentration of BSA was 20 mg/mL, the adhesion ability of the cells to modified scaffold was significantly increased, and the cell proliferation was facilitated.

Keywords

Scaffold Demineralized bone matrix Bovine serum albumin Cell adhesion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Francis C. S., Mobin S. S., Lypka M. A., Rommer E., Yen S., Urata M. M., Hammoudeh T. A., Plastic and Reconstructive Surgery, 2013, 131(5), 1107CrossRefGoogle Scholar
  2. [2]
    Wang X., Li Y. L., Han R., He C., Wang G. L., Wang J. W., Zheng J. L., Pei M., Wei L., PLoS ONE, 2014, 9(12), e116061CrossRefGoogle Scholar
  3. [3]
    Hammoudeh J. A., Fahradyan A., Gould D. J., Liang F., Imahiyerobo T., Urbinelli L., Nguyen J. T., Magee W., Yen S., Urata M. M., Plastic and Reconstructive Surgery, 2017, 140(2), 318eCrossRefGoogle Scholar
  4. [4]
    Li Z., Hou T., Deng M., Luo F., Wu X., Xing J., Chang Z., Xu J., Tissue Eng. Part A, 2015, 21(7/8), 1398CrossRefGoogle Scholar
  5. [5]
    De l. F. R., Bernad A., Garcia-Castro J., Martin M. C., Cigudosa J. C., Cancer Research, 2010, 70(16), 6682CrossRefGoogle Scholar
  6. [6]
    Hou T., Li Z., Luo F., Xie Z., Wu X., Xing J., Dong S., Xu J., Biomaterials, 2014, 35(22), 5689CrossRefGoogle Scholar
  7. [7]
    Gruskin E., Doll B. A., Futrell F. W., Schmitz J. P., Hollinger J. O., Advanced Drug Delivery Reviews, 2012, 64(12), 1063CrossRefGoogle Scholar
  8. [8]
    Holt D. J., Grainger D. W., Advanced Drug Delivery Reviews, 2012, 64(12), 1123CrossRefGoogle Scholar
  9. [9]
    Buser Z., Brodke D. S., Youssef J. A., Rometsch E., Park J. B., Yoon S. T., Wang J. C., Meisel H. J., Global Spine Journal, 2018, 8(4), 396CrossRefGoogle Scholar
  10. [10]
    Janko M., Sahm J., Schaible A., Brune J. C., Bellen M., Schroder K., Seebach C., Marzi L., Henrich D., Journal of Tissue Engineering and Regenerative Medicine, 2018, 12(3), 653CrossRefGoogle Scholar
  11. [11]
    Peng W. X., Wang L., Cellular Physiology and Biochemistry, 2017, 43(4), 1648CrossRefGoogle Scholar
  12. [12]
    Francis G. L., Cytotechnology, 2010, 62(1), 1CrossRefGoogle Scholar
  13. [13]
    Skaliczki G., Schandl K., Weszl M., Major T., Kovács M., Skaliczki J., Szendrői M., Dobó-Nagy C., Lacza Z., International Orthopaedics, 2013, 37(4), 741CrossRefGoogle Scholar
  14. [14]
    Weszl M., Skaliczki G., Cselenyák A., Kiss L., Major T., Schandl K., Bognár E., Stadler G., Peterbauer A., Csőnge L., Lacza Z., Journal of Orthopaedic Research, 2012, 30(3), 489CrossRefGoogle Scholar
  15. [15]
    Horváthy D. B., Vácz G., Szabó T., Szigyártó I. C., Toró I., Vámos B., Hornyák I., Renner K., Klára T., Szabó B. T., Dobó-Nagy C., Doros A., Lacza Z., Journal of Biomedical Materials Research Part B Applied Biomaterials, 2016, 104(1), 126CrossRefGoogle Scholar
  16. [16]
    Urist M. R., Mikulski A., Boyd S. D., Archives of Surgery, 1975, 110(4), 416CrossRefGoogle Scholar
  17. [17]
    Xu Z. D., Wang G. D., Liu X. M., Cai X. H., Xu J. Z., Chinese Journal of Tissue Engineering Research, 2014, 18(39), 6316Google Scholar
  18. [18]
    Cao L. Z., Study on the Interaction of Five Food Color Ants with BSA by Multispectral Techniques, China West Normal University, Nanchong, 2017 Google Scholar
  19. [19]
    Wu J. B., Preparation and Simulation of Zinc Doped Hydroxyapatite Compounds(Polylactic Acid or Graphene), Shenzhen University, Shenzhen, 2017 Google Scholar
  20. [20]
    Chakraborty J., Mazaj M., Kapoor R., Gouri S. P., Daneu N., Sinha M. K., Pande G., Basu D., Journal of Materials Research, 2009, 24(6), 2145CrossRefGoogle Scholar
  21. [21]
    Popat K. C., Eltgroth M., LaTempa T. J., Grimes C. A., Desai T. A., Small, 2007, 3(11), 1878CrossRefGoogle Scholar
  22. [22]
    Liu X. N., Zhou X. S., Li S. B., Lai R. F., Zhou Z. Y., Zhang Y., Zhou L., International Journal of Nanomedicine, 2014, 9, 1185CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  • Mengjie Sun
    • 1
  • Wei Feng
    • 2
  • Bowei Wang
    • 3
  • Bing Han
    • 3
  • Jundong Zou
    • 1
  • Chunying Yang
    • 1
  • Zhihui Liu
    • 1
    Email author
  1. 1.Stomatology Hospital of Jilin UniversityChangchunP. R. China
  2. 2.China-Japan Union Hospital of Jilin UniversityChangchunP. R. China
  3. 3.The Second Hospital of Jilin UniversityChangchunP. R. China

Personalised recommendations