Advertisement

Chemical Research in Chinese Universities

, Volume 35, Issue 4, pp 674–679 | Cite as

Converting Thiophene in Simulated Coking Crude Benzene to N, N-Dimethyl-2-thiophenecarboxamide by Dimethylcarbamyl Chloride Under Mild Conditions

  • Xizhou ShenEmail author
  • Hao Song
  • Liuya Fang
  • Hang Deng
  • Feng Gan
  • Zhi Shen
Article
  • 24 Downloads

Abstract

Since the content of thiophene in coking crude benzene is high, it is necessary to remove it from coking crude benzene for efficient utilization. In this study, an important intermediate, N, N-dimethyl-2-thiophenecar-boxamide, was synthesized from thiophene and dimethylcarbamyl chloride. The influences of the dosages of dimethylcarbamyl chloride and ZnCl2 catalyst, reaction temperature and time on the removal rate were further explored based on the reaction kinetics. The structure of the target product was characterized by means of MS, 1H NMR and 13C NMR. The removal rate of thiophene was 98.14% after the reaction for 2 h and thiophene was almost removed after the reaction for 3 h under the optimal reaction conditions[a molar ratio of n(thiophene): n(dimethylcarbamyl chloride):n(ZnCl2)=1:12:10, 300 r/min, 318 K and 101.325 kPa]. The acylation of thiophene with dimethylcarbamyl chloride was approximately in accord with the first order kinetic equation at 303–323 K. The activation energy was 53.9850 kJ/mol and the pre-exponential factor was 1.4521×109 h−1.

Keywords

Coking crude benzene F-C acylation Acyl chloride Thiophene Thiophene derivative 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Dieterle M., Schwab E., Topics in Catalysis, 2016, 59(8/9), 817CrossRefGoogle Scholar
  2. [2]
    Eßer J., Wasserscheid P., Jess A., Green Chemistry, 2004, 6(7), 316CrossRefGoogle Scholar
  3. [3]
    Vagner S. E., Tryasunov B. G., Solid Fuel Chemistry, 2012, 46(4), 225CrossRefGoogle Scholar
  4. [4]
    Liu D., Gui J., Song L., Zhang X., Sun Z., Liquid Fuels Technology, 2008, 26(9), 973Google Scholar
  5. [5]
    Bosmann A., Datsevich L., Jess A., Lauter A., Schmitz C., Wasserscheid P., Chemical Communications, 2001, (23), 2494Google Scholar
  6. [6]
    Li F. T., Ying L., Sun Z. M., Energy & Fuels, 2010, 24(8), 4285CrossRefGoogle Scholar
  7. [7]
    Tan X. Y., Wang X. S., Chemical Industry and Engineering Progress, 1998, (02), 57Google Scholar
  8. [8]
    Liao J. J., Zhang Y. J., Wang W. B., Xie Y. Y., Chang L. P., Adsorption, 2012, 18(4), 181CrossRefGoogle Scholar
  9. [9]
    Guo S. C., Hu H. Q., Coal Chemical Technolgy(3rd Edition), Chemical Industry Press, Beijing, 2012 Google Scholar
  10. [10]
    Zainab N., Jaf M. A., Hussein A. M., Jiang Z. T., Bogdan Z. D., Molecular Catalysis, 2018, 459, 21CrossRefGoogle Scholar
  11. [11]
    Yik E., Iglesia E., Journal of Catalysis, 2018, 368, 411CrossRefGoogle Scholar
  12. [12]
    Li G. X., Zhao L. M., Zhu H. Y., Liu X. P., Ma H. F., Yu Y. C., Guo W. Y., Physical Chemistry Chemical Physics, 2017, 19(26), 17449CrossRefGoogle Scholar
  13. [13]
    Sepulveda C., Belliere V., Laurenti D., Escalona D., García R., Geantet C., Vrinat M., Applied Catalysis A: General, 2010, 393(1/2), 288Google Scholar
  14. [14]
    Garcia C. L., Lercher J. A., Physical Chemistry, 1992, 96(6), 2669CrossRefGoogle Scholar
  15. [15]
    Ling M. Y., Chen H. H., Applied Mechanics & Materials, 2011, (130–134), 1066Google Scholar
  16. [16]
    Xu H., Zhang D. D., Wu F. M., Cao R. Q., Fuel, 2017, 208, 508CrossRefGoogle Scholar
  17. [17]
    Luo G. H., Xu X., Yang C. Y., Zhang G. Y., Fuel & Chemical Processes, 2001, 32(2), 86Google Scholar
  18. [18]
    Liao J. J., Wang Y. S., Chang L. P., Bao W. R., Green Chemistry, 2015, 17(5), 3164CrossRefGoogle Scholar
  19. [19]
    Liao J. J., Bao L., Wang W. B., Xie Y. Y., Chang J. Y., Fuel Processing Technology, 2014, 117, 38CrossRefGoogle Scholar
  20. [20]
    Pan C. G., Ma H. Z., Advanced Materials Research, 2012, 524–527, 876CrossRefGoogle Scholar
  21. [21]
    Kang Z. J., Ma H. Z., Wang B., Industrial & Engineering Chemistry Research, 2009, 48(20), 9346CrossRefGoogle Scholar
  22. [22]
    Wang W. B., Ma L., Liao J. J., Xie Y. Y., Chang J. Y., Chang L. P., Chinese Journal of Catalysis, 2012, 33(2), 323Google Scholar
  23. [23]
    Niu C. C., Cao X. P., Chen L. J., Zeng A. W., Chemical Industry and Engineering Processese, 2012, 29(3), 11Google Scholar
  24. [24]
    Gao J., Chen X., Ren N., Wu W., Li C., Meng H., AIChE Journal, 2013, 59(8), 2966CrossRefGoogle Scholar
  25. [25]
    Chen X. Y., Gao J. J., Lu Y. Z., Meng H., Li C. X., Fuel Processing Technology, 2015, 130, 7CrossRefGoogle Scholar
  26. [26]
    Li Y. W., Ma H. Z., Advanced Materials Research, 2012, 455/456(4), 966CrossRefGoogle Scholar
  27. [27]
    Sun H. B., Hua R. M., Chen S. J., Yin Y. W., Advanced Synthesis & Catalysis, 2006, 348(14), 1919CrossRefGoogle Scholar
  28. [28]
    Khatri C., Jain D., Rani A., Fuel, 2010, 89(12), 3853CrossRefGoogle Scholar
  29. [29]
    Makihara M., Aoki H., Komura K., Catalysis Letters, 2018, 148(10), 2974CrossRefGoogle Scholar
  30. [30]
    Kawamura M., Cui D. M., Hayashi T., Shimada S., Tetrahedron Letters, 2003, 44(42), 7715CrossRefGoogle Scholar
  31. [31]
    Kawamura M., Cui D. M., Shimada S., Cheminform, 2007, 62(39), 9201Google Scholar
  32. [32]
    Lsaev Y., Fripiat J. J., Journal of Catalysis, 1999, 182(1), 257CrossRefGoogle Scholar
  33. [33]
    Xu K., Hu Y. B., Zhang S., Zha Z. G., Wang Z. Y., Chemistry-A European Journal, 2012, 18(32), 9793CrossRefGoogle Scholar
  34. [34]
    Bao Y. S., Wang L. L., Jia M. L., Xu A. J., Agula B., Baiyin M., Zhaorigetu B., Green Chemistry, 2016, 18(13), 3808CrossRefGoogle Scholar
  35. [35]
    Mohammad A., Chandra P., Ghosh T., Carraro M., Mobin S. M., Inorganic Chemistry, 2017. 56(17), 10590CrossRefGoogle Scholar
  36. [36]
    Asai S., Ban K., Monguchi Y., Sajiki H., Sawama Y., Synlett., 2018, 29(3), 322CrossRefGoogle Scholar
  37. [37]
    Han X. Z., Ouyang G. P., He B. A., Guangzhou Chemical Industry, 2013, 41(5), 113Google Scholar
  38. [38]
    Shirinian V. Z., Leonid L., Belen K., Krayushkin M. M., Cheminform, 2002, 33(32), 19Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  • Xizhou Shen
    • 1
    • 2
    Email author
  • Hao Song
    • 1
  • Liuya Fang
    • 1
  • Hang Deng
    • 1
  • Feng Gan
    • 1
  • Zhi Shen
    • 1
  1. 1.School of Chemical Engineering & PharmacyWuhan Institute of TechnologyWuhanP. R. China
  2. 2.Key Laboratory for Green Chemical Process, Ministry of EducationWuhan Institute of TechnologyWuhanP. R. China

Personalised recommendations