Advertisement

Chemical Research in Chinese Universities

, Volume 35, Issue 4, pp 714–720 | Cite as

Self-cleaning Anti-fouling TiO2/Poly(aryl ether sulfone) Composite Ultrafiltration Membranes

  • Wenzhe Geng
  • Hongchuan Jiang
  • Xia Yang
  • Yong Feng
  • Xinyu Wang
  • Zhi GengEmail author
  • Mingxin Huo
Article
  • 17 Downloads

Abstract

A series of novel TiO2/poly(aryl ether sulfone) ultrafiltration membranes with anti-fouling and self-cleaning properties was designed and prepared. First, anti-photocatalytic degraded fluorine contained poly(aryl ether sulfone) matrix(PAES-F) was synthesized. Then the composite membranes were prepared via TiO2 nanoparticles and PAES-F polymer matrix by solution blending and non-solvent induced phase inversion methods. Further, separation efficiency, fouling behavior and self-cleaning property of the composite ultrafiltration(UF) membranes were investigated by dead-end filtration experiments using a polyacrylamide solution. The composite UF membranes exhibited outstanding self-cleaning efficiency and anti-photocatalytic degraded property after exposure to simulated sunlight irradiation. The water flux recovery ratios(FRR) of the optimal composite UF membranes could reach 74.24%, which was attributable to photocatalytic degradation of the organic contaminant by TiO2. And the retention rates of the composite UF membranes could maintain over 97%, which indicated the excellent photocatalytic degradation resistance of the fluorine contained PAES-F matrix. The novel high performance composite UF membranes have a broad application prospect in water treatment.

Keywords

Poly(aryl ether sulfone) Ultrafiltration Anti-fouling Self-cleaning Titanium dioxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Yang Z., Yuan B., Huang X., Zhou J. Y., Cai J., Yang H., Li A. M., Cheng R. S., Water Research, 2012, 46, 107CrossRefGoogle Scholar
  2. [2]
    Zahrim A. Y., Tizaoui C., Hilal N., Desalination, 2011, 266, 1CrossRefGoogle Scholar
  3. [3]
    Zhang Y. H., Liu L. F., Yang F. L., Journal of Applied Polymer Science, 2016, 133, 43597Google Scholar
  4. [4]
    Deegan A. M., Shaik B., Nolan K., Urell K., Oelgemöller M., Tobin J., Morrissey A., International Journal of Environmental Science and Technology, 2011, 8, 649CrossRefGoogle Scholar
  5. [5]
    Aravinda P., Subramanyan V., Ferro S., Gopalakrishnan R., Water Research, 2016, 93, 230CrossRefGoogle Scholar
  6. [6]
    Kang G. D., Cao Y. M., Journal of Membrane Science, 2014, 463, 145CrossRefGoogle Scholar
  7. [7]
    Baker R.W. Membrane Techlogy and Applications 2nd Edition Wiley-VCH Chichester 2004 Google Scholar
  8. [8]
    Guo J., Sotto A., Martín A., Kim J., Journal of Industrial and Engineering Chemistry, 2017, 45, 257CrossRefGoogle Scholar
  9. [9]
    Koh M., Clark M. M., Howe K. J., Journal of Membrane Science, 2005, 256, 169Google Scholar
  10. [10]
    Zhao C. S., Xue J. M., Ran F., Sun S. D., Progress in Materials Science, 2013, 58, 76CrossRefGoogle Scholar
  11. [11]
    Werber J. R., Osuji C. O., Nature Reviews Materials, 2016, 1, 1CrossRefGoogle Scholar
  12. [12]
    Greenleea L. F., Lawlerb D. F., Freemana B. D., Marrotc B., Moulin P., Water Res., 2009, 43, 2317CrossRefGoogle Scholar
  13. [13]
    Bruggen B. V. D., Journal of Applied Polymer Science, 2009, 114, 630CrossRefGoogle Scholar
  14. [14]
    Zhang M. Y., Liu Z. Y., Gao Y., Shu L., RSC Advance, 2017, 7, 42919CrossRefGoogle Scholar
  15. [15]
    Zhang J. G., Xu Z. W., Mai W., Min C. Y., Zhou B. M., Shan M. J., Li Y. L., Yang C. Y., Wang Z., Qian X. M., Journal of Materials Chemistry A, 2013, 1, 3101CrossRefGoogle Scholar
  16. [16]
    Zhou Q., Xu S., Zhu C. X., Cao B. Y., Kausar F., Xu A. H., Yuan W. Z., Zhang Y. M., Journal of Materials Science, 2017, 52, 11737CrossRefGoogle Scholar
  17. [17]
    Liu S. S., Fang F., Wu J. J., Zhang K. S., Desalination, 2015, 375, 121CrossRefGoogle Scholar
  18. [18]
    Wang Z. T., Wang H. X., Liu J. D., Zhang Y. T., Desalination, 2014, 344, 313CrossRefGoogle Scholar
  19. [19]
    Wang Y. J., Liu L. F., Hong J. D., Cao J., Deng C. L., Journal of Membrane Science, 2018, 564, 372CrossRefGoogle Scholar
  20. [20]
    Zinadini S., Zinatizadeh A. A., Rahimi M., Vatanpour V., Zangeneh H., Journal of Membrane Science, 2014, 453, 292CrossRefGoogle Scholar
  21. [21]
    Li J. F., Xu Z. L., Yang H., Yu L. Y., Liu M., Applied Surface Science, 2009, 255, 4725CrossRefGoogle Scholar
  22. [22]
    Huang L. H., He Y., Jin L. Y., Hou X. W., Miao L. Y., Lü C. L., Chem. Res. Chinese Universities, 2018, 34(2), 318CrossRefGoogle Scholar
  23. [23]
    Geng Z., Yu Y., Zhu S. Y., Yu H. B., Liu J. C., Bian D. J., Yang X., Huo H. L., Huo M. X., Chem. Res. Chinese Universities, 2017, 33(1), 36CrossRefGoogle Scholar
  24. [24]
    Zhu K., Wang G. B., High Performance Polymers, 2017, 30, 602CrossRefGoogle Scholar
  25. [25]
    Barth C., Goncalves M. C., Pires A. T. N., Roeder J., Wolf B. A., Journal of Membrane Science, 2000, 169, 287CrossRefGoogle Scholar
  26. [26]
    Zhao C. S., Xue J. M., Ran F., Sun S. D., Progress in Materials Science, 2013, 58, 76CrossRefGoogle Scholar
  27. [27]
    Clech P. L., Lee E. K., Chen V., Water Research, 2006, 40, 323CrossRefGoogle Scholar
  28. [28]
    Pekakis P. A., Xekoukoulotakis N. P., Mantzavinos D., Water Research, 2006, 40, 1276CrossRefGoogle Scholar
  29. [29]
    Leong S., Razmjou A., Wang K., Hapgood K., Zhang X. W., Wang H. T., Journal of Membrane Science, 2014, 472, 167CrossRefGoogle Scholar
  30. [30]
    Xiao Y. T., Xu S. S., Li Z. H., An X. H., Zhou L., Zhang Y. L., Shiang F. Q., Chinese Science Bulletin, 2010, 55, 1345CrossRefGoogle Scholar
  31. [31]
    Geng Z., Yang X., Boo C., Zhu S. Y., Lu Y., Fan W., Huo M. X., Elimelech M., Yang X., Journal of Membrane Science, 2017, 529, 1CrossRefGoogle Scholar
  32. [32]
    Zhang X., Du A. J., Lee P., Sun D. D., Leckie J. O., Applied Catalysis B: Environmental, 2008, 84, 262CrossRefGoogle Scholar
  33. [33]
    Zhang G. L., Lu S. F., Zhang L., Meng Q., Shen C., Zhang J. W., Journal of Membrane Science, 2013, 436, 163CrossRefGoogle Scholar
  34. [34]
    Vatanpour V., Madaeni S. S., Khataee A. R., Salehi E., Zinadini S., Monfared H. A., Desalination, 2012, 292, 19CrossRefGoogle Scholar
  35. [35]
    He T. S., Zhou Z. F., Xu W. B., Ren F. M., Ma H. H., Wang J., Polymer, 2009, 50, 3031CrossRefGoogle Scholar
  36. [36]
    Wu A. Y., Kotaki M., Ye L., Lu X., Polymer, 2007, 48, 512CrossRefGoogle Scholar
  37. [37]
    Zhang Z., Meng Q., Chung T. C. M., Polymer, 2009, 50, 707CrossRefGoogle Scholar
  38. [38]
    Soroko I., Livingston A., Journal of Membrane Science, 2009, 343, 189CrossRefGoogle Scholar
  39. [39]
    Li J. F., Xu Z. L., Yang H., Yu L. Y., Liu M., Applied Surface Science, 2009, 255, 4725CrossRefGoogle Scholar
  40. [40]
    Yang Y., Zhang H., Wang P., Zheng Q., Li J., Journal of Membrane Science, 2007, 288, 231CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  • Wenzhe Geng
    • 1
  • Hongchuan Jiang
    • 1
  • Xia Yang
    • 1
  • Yong Feng
    • 1
  • Xinyu Wang
    • 1
  • Zhi Geng
    • 1
    Email author
  • Mingxin Huo
    • 1
  1. 1.Jilin Engineering Lab for Water Pollution Control and Resources Recovery, College of EnvironmentNortheast Normal UniversityChangchunP. R. China

Personalised recommendations