Advertisement

Chemical Research in Chinese Universities

, Volume 35, Issue 4, pp 721–728 | Cite as

Synthesis of Poly(isosorbide carbonate) via Melt Polycondensation Catalyzed by a KF/MgO Catalyst

  • Xiaolong Shen
  • Shaoying Liu
  • Qingyin Wang
  • Hua Zhang
  • Gongying WangEmail author
Article
  • 19 Downloads

Abstract

MgO loaded with KF was prepared by using the impregnation method and was employed as the catalyst for the direct transesterification of diphenyl carbonate(DPC) with isosorbide to synthesize high-molecular-weight poly(isosorbide carbonate)(PIC). The relationship between physical-chemical properties and catalytic performance for KF/MgO in this melt process was investigated by various characterization techniques. The basic site amount and strength were found to be responsible for this transesterification process, and the medium and strong basic sites tended to promote the polycondensation reaction. 20-KF/MgO-500 exhibited the best catalytic performance, giving PIC with Mw of 84200 and glass transition temperature(Tg) of 173 °C under optimal conditions. Additionally, 20-KF/MgO-500 was found to catalyze the transerification of DPC with isosorbide and other diols to synthesize the corresponding poly(aliphatic diol-co-isosorbide carbonate)s(PAICs). This excellent activity can be ascribed to the presence of an abundance of basic sites and their specific basic strength on the surface of KF/MgO.

Keywords

KF/MgO Poly(isosorbide carbonate) Diphenyl carbonate Transesterification Solid base 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2019_8356_MOESM1_ESM.pdf (950 kb)
Synthesis of Isosorbide Polycarbonates via Melt Polycondensation Catalyzed by a KF/MgO Catalyst

References

  1. [1]
    Liu Y. Z., Yao J. Y., Cao H., Leng B. X., Shao Z. Z., Chem. Res. Chinese Universites, 2012, 28(5), 921Google Scholar
  2. [2]
    Patwa R., Kumar A., Katiyar V. J., Appl. Polym. Sci., 2018, 135, 46590CrossRefGoogle Scholar
  3. [3]
    Chang Q., Li L., Yang D. L., Zhang M. Y., Ton-That M. T., Hu W., Lu S., Chem. Res. Chinese Universites, 2015, 31(4), 640CrossRefGoogle Scholar
  4. [4]
    Bersot J. C., Jacquel D., Saint-Loup P., Macromol P., Chem. Phys., 2011, 212(19), 2114Google Scholar
  5. [5]
    Gioia C., Vannini M., Marchese P., Minesso A., Cavalieri R., Colonna M., Celli A., Green Chem., 2014, 16(4), 1807CrossRefGoogle Scholar
  6. [6]
    Caouthar A. A., Loupy A., Bortolussi M., Blais J. C., Dubreucq L., Meddour A., Polym. Chem., 2005, 43(24), 6480CrossRefGoogle Scholar
  7. [7]
    Wroblewska A., Zych A., Thiyagarajan S., Dudenko D., van Es D., Hansen M. R., Koning C., Duchateau R., Jasinska-Walc L., Polym. Chem., 2015, 6(22), 4133CrossRefGoogle Scholar
  8. [8]
    Kim H. J., Kang M. S., Knowles J. C., Gong M. S., J. Bio. Mater. Appl., 2014, 29(3), 454Google Scholar
  9. [9]
    Javni I., Bilic O., Bilic N., Petrovic Z. S., Eastwood E. S., Zhang F., IIavsky J. J., Appl. Polym. Sci., 2015, 132(47), 42830CrossRefGoogle Scholar
  10. [10]
    Chatti S., Schwarz S., Kricheldorf H. R., Macromolecules, 2006, 39(26), 9064CrossRefGoogle Scholar
  11. [11]
    Park J. H., Jeon J. Y., Lee J. J., Jang Y., Varghese J. K., Lee B. Y., Macromolecules, 2013, 46(9), 3301CrossRefGoogle Scholar
  12. [12]
    Feng L., Zhu W. X., Li C. C., Guan G. H., Zhang D., Xiao Y. N., Zheng L. C., Polym. Chem., 2014, 6(4), 633CrossRefGoogle Scholar
  13. [13]
    Li Q., Zhu W. X., Li C. C., Guan G. H., Zhang D., Xiao Y. N., Zheng L. C., J. Polym. Sci., Part A: Polym. Chem. 2013, 51(6), 1387CrossRefGoogle Scholar
  14. [14]
    Eo Y. S., Rhee H. W., Shin S. H., J. Ind. Eng. Chem., 2016, 37, 42CrossRefGoogle Scholar
  15. [15]
    Sun W., Xu F., Cheng W. G., Sun J., Ning G. Q., Zhang S. J., Chinese J. Catal., 2017, 38(5), 908CrossRefGoogle Scholar
  16. [16]
    Ma C. K., Xu F., Cheng W. G., Tan X., Su Q., Zhang S. J., ACS Sustainable Chem. Eng., 2018, 6, 2684CrossRefGoogle Scholar
  17. [17]
    Zhang M., Lai W. Q., Su L. L., Wu G. Z., Ind. Eng. Chem. Res., 2018, 57(14), 4824CrossRefGoogle Scholar
  18. [18]
    Fan Y. P., Wang Q. Y., Yang X. G., Yao J., Wang G. Y., Chinese J. Chem. Eng., 2009, 17(5), 883CrossRefGoogle Scholar
  19. [19]
    Liang X. Z., Gao S., Yang J. G., He M. Y., Renew. Energ., 2009, 34, 2215CrossRefGoogle Scholar
  20. [20]
    Wan T., Yu P., Gong S. K., Li Q., Luo Y. B., J. Chem. Eng., 2008, 25, 998Google Scholar
  21. [21]
    Subramaniapillai N., Muhammed N., Kader M. M. S. B., Narayanan A., Environ. Prog. Sustain., 2015, 34(4), 1166CrossRefGoogle Scholar
  22. [22]
    Xie W., Huang X., Catal. Lett., 2006, 107(1/2), 53CrossRefGoogle Scholar
  23. [23]
    Weinstock L. M., Stevenson J. M., Tomellin S. A., Pan S. H., Utne T., Jobson R. B., Reinhold D. F., Tetrahedron. Lett., 1986, 27, 3845CrossRefGoogle Scholar
  24. [24]
    Niu X. Y., Xing C. M., Jiang W., Dong Y. L., Yuan F. L., Zhu Y. J., Reac. Kinet. Mech. Cat., 2013, 109, 167CrossRefGoogle Scholar
  25. [25]
    Gao L., Xu B., Xiao G., Lv J., Energ. Fuel., 2008, 22, 3531CrossRefGoogle Scholar
  26. [26]
    Xu C., Sun J., Zhao B., Liu Q., Appl. Catal., B, 2010, 99, 111CrossRefGoogle Scholar
  27. [27]
    Di Serio M., Tesser R., Ferrara A., Santacesaria E. J., Mole. Catal. A: Chem., 2004, 212, 251CrossRefGoogle Scholar
  28. [28]
    Nair P. A., Ramesh P. J., Appl. Polym. Sci., 2011, 122(3), 1946CrossRefGoogle Scholar
  29. [29]
    Ando T., Brown S. J., Clark J. H., Cork D. G., Hanafusa T., Ichihara J., Miller J. M., Robertson M. S. J., J. Chem. Soc. Perk. T. 2, 1986, 8, 1133CrossRefGoogle Scholar
  30. [30]
    Zhu J. H., Chun Y., Qin Y., Xu Q. H., Micropor. Mesopor. Mater., 1998, 24, 19CrossRefGoogle Scholar
  31. [31]
    Liu Z. M., Wang J. W., Kang M. Q., Yin N., Wang X. K., Tan Y. S., Zhu Y. L., J. Ind. Eng. Chem., 2015, 21, 394CrossRefGoogle Scholar
  32. [32]
    Wang S., Hao P. F., Li S. X., Zhang A. L., Guan Y. Y., Zhang L. M., Appl Catal. A: Gen., 2017, 542, 174CrossRefGoogle Scholar
  33. [33]
    Yan S., Kim M., Salley S. O., Ng K. Y. S., Appl. Catal. A: Gen., 2009, 360, 163CrossRefGoogle Scholar
  34. [34]
    Zheng L. P., Xia S. X., Hou Z. T., Zhang M. Y., Hou Z. Y., Chinese J. Catal., 2014, 35(3), 310CrossRefGoogle Scholar
  35. [35]
    Hájek M., Kutálek P., Smolákováet L., Troppová I., Čapek L., Kubička D., Kocík J., Thanh D. N., Chem. Eng. J., 2015, 263, 160CrossRefGoogle Scholar
  36. [36]
    Wang Z. Q., Yang X. G., Liu S. Y., Zhang H. X., Wang G. Y., Chem. Res. Chinese Universites, 2016, 32(3), 512CrossRefGoogle Scholar
  37. [37]
    Wang Z. Q., Yang X. G., Li J. G., Liu S. Y., Wang G. Y., J. Mol. Catal. A: Chem., 2016, 424, 77CrossRefGoogle Scholar
  38. [38]
    Zhao H. M., Jiang M. J., Tian H. S., Acta Polymerica Sinica(in Chinese), 2011, (1), 192Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  • Xiaolong Shen
    • 1
    • 2
  • Shaoying Liu
    • 1
  • Qingyin Wang
    • 1
  • Hua Zhang
    • 1
  • Gongying Wang
    • 1
    • 2
    Email author
  1. 1.Chengdu Institute of Organic ChemistryChinese Academy of SciencesChengduP. R. China
  2. 2.National Engineering Laboratory for VOCs Pollution Control Material & TechnologyUniversity of Chinese Academy of SciencesBeijingP. R. China

Personalised recommendations