Chemical Research in Chinese Universities

, Volume 35, Issue 4, pp 729–734 | Cite as

Synthesis and Properties of Poly(butylene carbonate-co-spirocyclic carbonate)

  • Changliang Zhu
  • Shaoying Liu
  • Qingyin Wang
  • Hua Zhang
  • Gongying WangEmail author


Poly(butylene carbonate)(PBC) has significantly promising applications as a degradable material in the field of polymers, while its poor thermal performance and low crystallization rate are its main defects. To overcome these shortcomings, a series of poly(butylene carbonate-co-spirocyclic carbonate)(PBSC) copolymers were synthesized from diphenyl carbonate, 1,4-butanediol and spiroglycol via two-step polycondensation reactions, using magnesium oxide as a catalyst. Differential scanning calorimetry(DSC) results indicated that the glass transition temperature(Tg) values of PBSC copolymers were enhanced from −19 °C to 56 °C with rising the spiroacetal moiety content. Thermogravimetric analysis(TGA) results showed that the resulting PBSCs have a higher thermal stability than that of poly(butylene carbonate). Wide angle X-ray diffraction(WXRD) patterns were characterized to investigate the crystallization behaviour of PBSCs. Tensile testing demonstrated that copolymerization of spiroacetal moieties into PBC chains imparted PBSC with favourable mechanical performance. Typically, PBSC30 had a tensile modulus of (1735±430) MPa, a tensile strength of (42±5) MPa and an elongation of 504%±36%.


Poly(butylene carbonate) Spiroglycol Diphenyl carbonate Thermal property 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2019_8355_MOESM1_ESM.pdf (289 kb)
Synthesis and properties of poly(butylene carbonate-co-spirocyclic carbonate)


  1. [1]
    Naik P. U., Refes K., Sadaka F., Brachais C. H., Boni G., Couvercelle J. P., Picquet M., Plasseraud L., Polym. Chem., 2012, 3, 1475CrossRefGoogle Scholar
  2. [2]
    Suriano F., Coulembier O., Hedrickb J. L., Duboisa P., Polym. Chem., 2011, 2, 528CrossRefGoogle Scholar
  3. [3]
    Tschan M. J. L., Brule E., Haqueete P., Thomas C. M., Polym. Chem., 2012, 3, 836CrossRefGoogle Scholar
  4. [4]
    Mutlu H., Ruiz J., Solleder S. C., Meier M. A. R., Green Chem., 2012, 14, 1728CrossRefGoogle Scholar
  5. [5]
    Oshimura M., Hirata T., Hirano T., Ute K., Polymer, 2017, 131, 50CrossRefGoogle Scholar
  6. [6]
    Zhu W., Huang X., Li C., Xiao Y., Zhang D., Guan G., Polym. Int., 2011, 60, 1060CrossRefGoogle Scholar
  7. [7]
    Park J. H., Jeon J. Y., Lee J. J., Jang Y., Varghese J. K., Lee B. Y., Macromolecules, 2013, 46, 3301CrossRefGoogle Scholar
  8. [8]
    Sun J. J., Kuckling D., Polym. Chem., 2016, 7, 1642CrossRefGoogle Scholar
  9. [9]
    Wang Z. Q., Yang X. G., Liu S. Y., Hu J., Zhang H., Wang G. Y., RSC Adv., 2015, 5, 87311CrossRefGoogle Scholar
  10. [10]
    Wang Z. Q., Yang X. G., Liu S. Y., Zhang H., Wang G. Y., Chem. Res. Chinese Universities, 2016, 32(3), 512CrossRefGoogle Scholar
  11. [11]
    Wang Z. Q., Bai Y. S., Jiang W., Yang X. G., Liu S. Y., Wang G. Y., Chin. J. Polym. Sci., 2017, 35, 130CrossRefGoogle Scholar
  12. [12]
    Wang Z. Q., Yang X. G., Li J. G., Liu S. Y., Wang G. Y., J. Mol. Catal. A: Chem., 2016, 424, 77CrossRefGoogle Scholar
  13. [13]
    Zhang J., Zhu W., Li C., Zhang D., Xiao Y., Guan G., Zheng L., RSC Adv., 2015, 5, 2213CrossRefGoogle Scholar
  14. [14]
    Cai X., Yang X., Zhang H., Wang G., Polym. Degrad Stab., 2017, 143, 35CrossRefGoogle Scholar
  15. [15]
    Cai X., Yang X., Zhang H., Wang G., Polymer, 2018, 134, 63CrossRefGoogle Scholar
  16. [16]
    Zhu W., Zhou W., Li C., Xiao Y., Zhang D., Guan G., Wang D., J. Macromol. Sci., Part A: Pure Appl. Chem., 2011, 48, 583CrossRefGoogle Scholar
  17. [17]
    Lee J. J., Jeon J. Y., Park J. H., Jang Y., Hwang E. Y., Lee B. Y., RSC Adv., 2013, 3, 25823CrossRefGoogle Scholar
  18. [18]
    Zhang J., Zhu W., Li C., Zhang D., Xiao Y., Guan G., Zheng L., J. Appl. Polym. Sci., 2015, 132, 41952Google Scholar
  19. [19]
    Lavilla C., Alla A., Ilarduya A. M., Benito E., Garcia-Martin M. G., Galbis J. A., J. Polym. Sci. Part A: Polym. Chem., 2012, 50, 1591CrossRefGoogle Scholar
  20. [20]
    Akbulut G., Sonmez H. B., Wudl F., J. Polym. Res., 2013, 20, 1CrossRefGoogle Scholar
  21. [21]
    Sudo A., Sano T., Harada M., Ishida D., ACS Macro. Lett, 2014, 3, 808CrossRefGoogle Scholar
  22. [22]
    Pemba A. G., Rostagno M., Lee T. A., Miller S. A., Polym. Chem., 2014, 5, 3214CrossRefGoogle Scholar
  23. [23]
    Choi G. H., Hwang D. Y., Suh D. H., Macromolecules, 2015, 48, 6839CrossRefGoogle Scholar
  24. [24]
    Lavilla C., Alla A., Ilarduya A. M., Benito E., Garcia-Martin M. G., Galbis J. A., Munoz-Guerra S., Biomacromolecules, 2011, 12, 2642CrossRefGoogle Scholar
  25. [25]
    Lingier S., Spiesschaert Y., Dhanis B., Wildeman S. D., Prez F. E. D., Macromolecules, 2017, 50, 5346CrossRefGoogle Scholar
  26. [26]
    Lingier S., Espeel P., Suarez S. S., Turuc O., Wildeman S. D., Prez F. E. D., European Polymer Journal, 2015, 70, 232CrossRefGoogle Scholar
  27. [27]
    Zini E., Scandola M., Jiang Z. Z., Liu C., Gross R. A., Macromolecules, 2008, 41, 4681CrossRefGoogle Scholar
  28. [28]
    Wang X., Wang Q., Liu S., Wang G., Polym Degrad Stab., 2018, 154, 96CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  • Changliang Zhu
    • 1
    • 2
  • Shaoying Liu
    • 1
  • Qingyin Wang
    • 1
  • Hua Zhang
    • 1
  • Gongying Wang
    • 1
    Email author
  1. 1.Chengdu Institute of Organic ChemistryChinese Academy of SciencesChengduP. R. China
  2. 2.National Engineering Laboratory for VOCs Pollution Control Material & TechnologyUniversity of Chinese Academy of SciencesBeijingP. R. China

Personalised recommendations