Chemical Research in Chinese Universities

, Volume 35, Issue 2, pp 171–178 | Cite as

Microwave Assisted Hydrothermal Way Towards Highly Crystalized N-Doped Carbon Quantum Dots and Their Oxygen Reduction Performance

  • He Huang
  • Chen Liang
  • Haoyan Sha
  • Ying Yu
  • Yue Lou
  • Cailing Chen
  • Chunguang LiEmail author
  • Xiaobo Chen
  • Zhan ShiEmail author
  • Shouhua Feng


We proposed a green microwave-assisted hydrothermal way to synthesize highly crystalized N-doped carbon quantum dots(N-CQDs). The N-CQDs obtained by this microwave method have good crystalline degree(ID/IG=0.6) and a high molar ratio of N/C(11.1%) comparing with those obtained from traditional top-down method. The experimental results show that glycerine plays a key role in the formation of highly crystalized N-CQDs. The as-prepared N-CQDs have good luminescent property and may be utilized as fluorescent probe to detect ions or mark cells. As the majority of N atoms in the N-CQDs were pyridinic type(64.8%), the as-prepared N-CQDs were used as a catalyst for the oxygen reduction reaction(ORR) electrocatalysis in the anode of the fuel cell(the onset potential is–0.121 V), which was a 4e-transfer procedure and the catalyst showed good stability after 100 cycles.


Carbon-dot Nitrogen-dopping Highly-crystalized Oxygen reduction reaction(ORR) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2019_8343_MOESM1_ESM.pdf (832 kb)
A Microwave method towards highly crystalized N-doped carbon quantum dots and their Oxygen reduction performance


  1. [1]
    Zhu S. J., Meng Q. N., Wang L., Zhang J. H., Song Y. B., Jin H., Zhang K., Sun H. C., Wang H. Y., Yang B., Angew. Chem. Int. Ed., 2013, 52(14), 3953CrossRefGoogle Scholar
  2. [2]
    Dong Y. Q., Pang H. C., Yang H. B., Guo C. X., Shao J. W., Chi Y. W., Li C. M., Yu T., Angew. Chem. Int. Ed., 2013, 52(30), 7800CrossRefGoogle Scholar
  3. [3]
    Tang L. B., Ji R. B., Li X. M., Bai G., Liu C. P., Hao J. H., Lin J. Y., Jiang H. X., Teng K. S., Yang Z. B., Lau S. P., ACS Nano, 2014, 8(6), 6312CrossRefGoogle Scholar
  4. [4]
    Tang L. B., Ji R. B., Cao X. K., Lin J. Y., Jiang H. X., Li X. M., Teng K. S., Luk C. M., Zeng S. J., Hao J. H., Lau S. P., ACS Nano, 2012, 6(6), 5102CrossRefGoogle Scholar
  5. [5]
    Li W., Zhang Z. H., Kong B., Feng S. S., Wang J. X., Wang L. Z., Yang J., Zhang F., Wu P. Y., Zhao D. Y., Angew. Chem. Int. Ed., 2013, 52(31), 8151CrossRefGoogle Scholar
  6. [6]
    Cao L., Wang X., Meziani M. J., Lu F., Wang H. F., Luo P. J., Lin Y., Harruff B. A., Veca L. M., Murray D., Xie S. Y., Sun Y. P., J. Am. Chem. Soc., 2007, 129(37), 11318CrossRefGoogle Scholar
  7. [7]
    Tetsuka H., Nagoya A., Fukusumi T., Matsui T., Adv. Mater., 2016, 28(23), 4632CrossRefGoogle Scholar
  8. [8]
    Yoon H., Chang Y. H., Song S. H., Lee E. S., Jin S. H., Park C., Lee J., Kim B. H., Kang H. J., Kim Y. H., Jeon S., Angew. Chem. Int. Ed., 2016, 28(26), 5255Google Scholar
  9. [9]
    Zhu S. J., Zhang J. H., Qiao C. Y., Tang S. J., Li Y. F., Yuan W. J., Li B., Tian L., Liu F., Hu R., Gao H. N., Wei H. T., Zhang H., Sun H. C., Yang B., Chem. Comm., 2011, 47(24), 6858CrossRefGoogle Scholar
  10. [10]
    Zhu S. J., Song Y. B., Shao J. R., Zhao X. H., Yang B., Angew. Chem. Int. Ed., 2015, 54(49), 14626CrossRefGoogle Scholar
  11. [11]
    Wang J., Liu Y. X., Peng F., Chen C. Y., He Y. H., Ma H., Cao L. X., Sun S. Q., Small, 2012, 8(15), 2430CrossRefGoogle Scholar
  12. [12]
    Li F., Wang J., Sun S. S., Wang H., Tang Z. Z., Nie G. J., Small, 2015, 11(16), 1954CrossRefGoogle Scholar
  13. [13]
    Gong K. P., Du F., Xia Z. H., Durstock M., Dai L. M., Science, 2009, 323(5915), 760CrossRefGoogle Scholar
  14. [14]
    Zheng Y., Jiao Y., Chen J., Liu J., Liang J., Du A. J., Zhang W. M., Zhu Z. H., Smith S. C., Jaroniec M., Lu G. Q., Qiao S. Z., J. Am. Chem. Soc., 2011, 133(50), 20116CrossRefGoogle Scholar
  15. [15]
    Li Y., Zhao Y., Cheng H. H., Hu Y., Shi G. Q., Dai L. M., Qu L. T., J. Am. Chem. Soc., 2012, 134(1), 15CrossRefGoogle Scholar
  16. [16]
    Zhang H. M., Wang Y., Wang D., Li Y. B., Liu X. L., Liu P. R., Yang H. G., An T. C., Tang Z. Y., Zhao H. J., Small, 2014, 10(16), 3371CrossRefGoogle Scholar
  17. [17]
    Han Y. Z., Tang D., Yang Y. M., Li C. X., Kong W. Q., Huang H., Liu Y., Kang Z. H., Nanoscale, 2015, 7(14), 5955CrossRefGoogle Scholar
  18. [18]
    Favaro M., Ferrighi L., Fazio G., Colazzo L., Valentin C. Di Durante C., Sedona F., Gennaro A., Agnoli S., Granozzi G., ACS Catalysis, 2014, 5(1), 129CrossRefGoogle Scholar
  19. [19]
    Bao L., Liu C., Zhang Z. L., Pang D. W., Adv. Mater., 2015, 27(10), 1663CrossRefGoogle Scholar
  20. [20]
    Pan D. Y., Zhang J. C., Li Z., Wu M. H., Adv. Mater., 2010, 22(6), 734CrossRefGoogle Scholar
  21. [21]
    Song Z. Q., Quan F. Y., Xu Y. H., Liu M. L., Cui L., Liu J. Q., Carbon, 2016, 104, 169CrossRefGoogle Scholar
  22. [22]
    Li F., Li Y. Y., Yang X., Han X. X., Jiao Y., Wei T. T., Yang D. Y., Xu H. P., Nie G. J., Angew. Chem. Int. Ed., 2018, 57(9), 2377CrossRefGoogle Scholar
  23. [23]
    Wang X., Cao L., Yang S. T., Lu F. S., Meziani M. J., Tian L. L., Sun K. W., Bloodgood M. A., Sun Y. P., Angew. Chem. Int. Ed., 2010, 49(31), 5310CrossRefGoogle Scholar
  24. [24]
    Schwenke A. M., Hoeppener S., Schubert U. S., Adv. Mater., 2015, 27(28), 4113CrossRefGoogle Scholar
  25. [25]
    Qu S. N., Wang X. Y., Lu Q. P., Liu X. Y., Wang L. J., Angew. Chem. Int. Ed., 2012, 51(49), 12215CrossRefGoogle Scholar
  26. [26]
    Hsu P. C., Chang H. T., Chem. Comm., 2012, 48(33), 3984CrossRefGoogle Scholar
  27. [27]
    Huang H., Li C. G., Zhu S. J., Wang H. L., Chen C. L., Wang Z. R., Bai T. Y., Shi Z., Feng S. H., Langmuir, 2014, 30(45), 13542CrossRefGoogle Scholar
  28. [28]
    Xu Y., Wu M., Liu Y., Feng X. Z., Yin X. B., He X. W., Zhang Y. K., Chemistry: a European Journal, 2013, 19(7), 2276CrossRefGoogle Scholar
  29. [29]
    Du F. Y., Yuan J., Zhang M. M., Li J. N., Zhou Z., Li Z., Cao M. L., Chen J. H., Zhang L. R., Liu X., Gong A. H., Xu W. R., Shao Q. X., RSC Adv., 2014, 4(71), 37536CrossRefGoogle Scholar
  30. [30]
    Lu S. Y., Cong R. D., Zhu S. J., Zhao X. H., Liu J. J., Tse J. S., Meng S., Yang B., ACS Appl. Mater. Interfaces, 2016, 8(6), 4062CrossRefGoogle Scholar
  31. [31]
    Wu X., Tian F., Wang W. X., Chen J., Wu M., Zhao J. X., J. Mater. Chem. C, 2013, 1(31), 4676CrossRefGoogle Scholar
  32. [32]
    Mazzier D., Favaro M., Agnoli S., Silvestrini S., Granozzi G., Maggini M., Moretto A., Chem. Comm., 2014, 50(50), 6592CrossRefGoogle Scholar
  33. [33]
    Peng H., Travas-Sejdic J., Chem. Mater., 2009, 21(23), 5563CrossRefGoogle Scholar
  34. [34]
    Vallan L., Urriolabeitia E. P., Ruiperez F., Matxain J. M., Canton-Vitoria R., Tagmatarchis N., Benito A. M., Maser W. K., J. Am. Chem. Soc., 2018, 140(40), 12862CrossRefGoogle Scholar
  35. [35]
    Krysmann M. J., Kelarakis A., Dallas P., Giannelis E. P., J. Am. Chem. Soc., 2012, 134(2), 747CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  • He Huang
    • 1
  • Chen Liang
    • 1
  • Haoyan Sha
    • 3
  • Ying Yu
    • 1
  • Yue Lou
    • 1
  • Cailing Chen
    • 1
  • Chunguang Li
    • 1
    Email author
  • Xiaobo Chen
    • 2
  • Zhan Shi
    • 1
    Email author
  • Shouhua Feng
    • 1
  1. 1.State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of ChemistryJilin UniversityChangchunP. R. China
  2. 2.School of EngineeringRMIT UniversityCarltonAustralia
  3. 3.Department of Chemical EngineeringUniversity of CaliforniaDavisUSA

Personalised recommendations