Advertisement

In-situ Synthesis and Characterization of Poly(vinyl alcohol)/Hydroxyapatite Composite Hydrogel by Freezing-thawing Method

  • Deyue Meng
  • Xiuqing Zhou
  • Keyan Zheng
  • Chong Miao
  • Ye ShengEmail author
  • Haifeng ZouEmail author
Article

Abstract

Poly(vinyl alcohol)/hydroxyapatite(PVA/HA) composite hydrogel was successfully in-situ synthesized via three cycles of freezing-thawing. The composition and structure of products were investigated by X-ray diffraction(XRD), Fourier transformed infrared spectroscopy(FTIR) and scanning electron microscopy(SEM). The influence of different preparation methods and contents of material on the mechanical properties of PVA/HA composite hydr ogel was discussed through tensile and compressive tests. The template of PVA could avoid the agglomeration of HA particles, which improves the mechanical properties of the composite hydrogel effectively. The tensile strength, modulus and compressive performances of the PVA/HA composite hydrogel prepared by the in-situ synthesis method were better than those of hydrogel obtained by the simple blend method. In addi tion, the effect of the content of PVA, HA, and the pH value on the properties of the PVA/HA composite hydrogel has been discussed in detail.

Keywords

Composite hydrogel In-situ synthesis Tensile property Compressive property 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Slaughter B. V., Khurshid S. S., Fisher O. Z., Khademhosseini A., Peppas N. A., Advanced Materials, 2009, 21(32/33), 3307CrossRefGoogle Scholar
  2. [2]
    Spiller K. L., Holloway J. L., Gribb M. E., Lowman A. M., J. Tissue Eng. Regen. M, 2011, 5(8), 636CrossRefGoogle Scholar
  3. [3]
    Zhang H. J., Xia H. S., Zhao Y., ACS Macro Lett., 2012, 1(11), 1233CrossRefGoogle Scholar
  4. [4]
    Stammen J. A., Williams S., Ku D. N., Guldberg R. E., Biomaterials, 2001, 22(8), 799CrossRefGoogle Scholar
  5. [5]
    Kumar A., Han S. S., Int. J. Polym. Mater. Po., 2017, 66(4), 159CrossRefGoogle Scholar
  6. [6]
    Kamoun E. A., Chen X., Eldin M. S. M., Kenawy E. R. S., Arab. J. Chem., 2015, 8(1), 1CrossRefGoogle Scholar
  7. [7]
    Zhang L., Zhao J., Zhu J. T., He C. C., Wang H. L., Soft Matter., 2012, 8(40), 10439CrossRefGoogle Scholar
  8. [8]
    Baker M. I., Walsh S. P., Schwartz Z., Boyan B. D., J. Biomed. Mater. Res. B, 2012, 100B(5), 1451CrossRefGoogle Scholar
  9. [9]
    Bhowmick S., Koul V., Mat. Sci. Eng. C: Mater., 2016, 59, 109CrossRefGoogle Scholar
  10. [10]
    Moreau D., Villain A., Ku D. N., Corte L., Biomatter, 2014, 4, e28764CrossRefGoogle Scholar
  11. [11]
    Ferraz M. P., Monteiro F. J., Manuel C. M., Journal of Applied Biomaterials & Biomechanics(JABB), 2004, 2(2), 74Google Scholar
  12. [12]
    Xu F., Li Y., Wang X., Wei J., Yang A., Journal of Materials Science, 2004, 39(18), 5669CrossRefGoogle Scholar
  13. [13]
    Maiolo A. S., Amado M. N., Gonzalez J. S., Alvarez V. A., Materials Science & Engineering C, 2012, 32(6), 1490CrossRefGoogle Scholar
  14. [14]
    Li W., Wang D., Yang W., Song Y., RSC Advances, 2016, 6(24), 20166CrossRefGoogle Scholar
  15. [15]
    Sinha A., Das G., Sharma B. K., Roy R. P., Pramanick A. K., Nayar S., Mat. Sci. Eng. C: Bio. S, 2007, 27(1), 70CrossRefGoogle Scholar
  16. [16]
    Nayar S., Pramanick A. K., Sharma B. K., Das G., Kumar B. R., Sinha A., J. Mater. Sci.-Mater. M, 2008, 19(1), 301CrossRefGoogle Scholar
  17. [17]
    Pang Y. X., Bao X., Journal of the European Ceramic Society, 2003, 23(10), 1697CrossRefGoogle Scholar
  18. [18]
    Poursamar S. A., Rabiee M., Samadikuchaksaraei A., Tahriri M., Karimi M., Azami M., J. Ceram. Process Res., 2009, 10(5), 679Google Scholar
  19. [19]
    Sang S. B., Wu Q. M., Gan Z., Electrochim. Acta, 2008, 53(15), 5065CrossRefGoogle Scholar
  20. [20]
    Swain S. K., Bhattacharyya S., Mat. Sci. Eng. C: Mater., 2013, 33(1), 67CrossRefGoogle Scholar
  21. [21]
    Pan Y. S., Xiong D. S., J. Wuhan Univ. Technol., 2010, 25(3), 474CrossRefGoogle Scholar
  22. [22]
    Gupta S., Webster T. J., Sinha A., J. Mater. Sci.-Mater. M, 2011, 22(7), 1763CrossRefGoogle Scholar
  23. [23]
    Paradossi G., Cavalieri F., Chiessi E., Spagnoli C., Cowman M. K., J. Mater. Sci.-Mater. M, 2003, 14(8), 687CrossRefGoogle Scholar
  24. [24]
    Gu Z. Q., Xiao J. M., Zhang X. H., Bio-Medical Materials and Engineering, 1998, 8(2), 75Google Scholar
  25. [25]
    Sardinha V. M., Lima L. L., Belangero W. D., Zavaglia C. A., Bavaresco V. P., Gomes J. R., Wear, 2013, 301(1/2), 218CrossRefGoogle Scholar
  26. [26]
    Sinha A., Guha A., Mat. Sci. Eng. C: Bio S., 2009, 29(4), 1330CrossRefGoogle Scholar
  27. [27]
    Hassan C. M., Peppas N. A., Adv. Polym. Sci., 2000, 153, 37CrossRefGoogle Scholar
  28. [28]
    Mansur H. S., Orefice R. L., Mansur A. A. P., Polymer, 2004, 45(21), 7193CrossRefGoogle Scholar
  29. [29]
    Mansur H. S., Sadahira C. M., Souza A. N., Mansur A. A. P., Mat. Sci. Eng. C: Bio. S, 2008, 28(4), 539CrossRefGoogle Scholar
  30. [30]
    Gonzalez J. S., Alvarez V. A., Journal of the Mechanical Behavior of Biomedical Materials, 2014, 34, 47CrossRefGoogle Scholar
  31. [31]
    Lee Y. J., Lee G. H., Hwang J. S., Jeong S. W., Kim H. C., Kim E., Oh T. H., Lee S. J., Lee S. G., Fiber Polym., 2016, 17(4), 502CrossRefGoogle Scholar
  32. [32]
    Tudorachi N., Chiriac A. P., J. Polym. Environ., 2011, 19(2), 546CrossRefGoogle Scholar
  33. [33]
    Pan Y., Xiong D., Journal of Materials Science Materials in Medicine, 2009, 20(6), 1291CrossRefGoogle Scholar
  34. [34]
    Wei Q., Wang Y., Li X., Yang M., Chai W., Wang K., Zhang Y., Journal of the Mechanical Behavior of Biomedical Materials, 2016, 57, 190CrossRefGoogle Scholar
  35. [35]
    Nugent M. J. D., Hanley A., Tomkins P. T., Higginbotham C. L., J. Mater. Sci.-Mater. M, 2005, 16(12), 1149CrossRefGoogle Scholar
  36. [36]
    Chen Y. N., Peng L., Liu T., Wang Y., Shi S., Wang H., ACS Applied Materials & Interfaces, 2016, 8(40), 27199CrossRefGoogle Scholar
  37. [37]
    Ma R., Xiong D., Miao F., Zhang J., Peng Y., Materials Science & Engineering C, 2009, 29(6), 1979CrossRefGoogle Scholar
  38. [38]
    Zhang D. K., Wang D. G., Duan J. J., Ge S. R., J. Bionic. Eng., 2009, 6(1), 22CrossRefGoogle Scholar
  39. [39]
    Pan Y. S., Xiong D. S., Gao F., J. Mater. Sci.-Mater. M, 2008, 19(5), 1963CrossRefGoogle Scholar
  40. [40]
    Ricciardi R., Auriemma F., Gaillet C., de Rosa C., Lauprêtre F., Macromolecules, 2004, 37(25), 9510CrossRefGoogle Scholar
  41. [41]
    Jin R., Teixeira L. S. M., Dijkstra P. J., Karperien M., Zhong Z., Feijen J., J. Control. Release, 2008, 132(3), E24CrossRefGoogle Scholar
  42. [42]
    Pan Y., Xiong D., Chen X., Journal of Materials Science, 2007, 42(13), 5129CrossRefGoogle Scholar
  43. [43]
    Yang Y., Wang X., Yang F., Shen H., Wu D., Advanced Materials, 2016, 28(33), 7178CrossRefGoogle Scholar
  44. [44]
    Sun Y., Xiang N., Jiang X., Hou L., Materials Letters, 2017, 194, 34CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  1. 1.College of ChemistryJilin UniversityChangchunP. R. China
  2. 2.JA Biotech Co., Ltd.ChangchunP. R. China

Personalised recommendations