Chemical Research in Chinese Universities

, Volume 35, Issue 2, pp 256–260 | Cite as

Amorphous Cu0 on Carbon Nanofiber as Recyclable Heterogeneous Catalyst for N-Arylation Reactions

  • Junzhong Wang
  • Hengyu Li
  • Dongdong Zhang
  • Jie BaiEmail author


A novel heterogeneous catalyst, amorphous Cu0 on the carbon nanofibers was developed and characterized by means of several characterization techniques. The prepared Cu0 was investigated as a heterogeneous catalyst for N-arylation reaction. The results show it is an excellent catalyst with recyclability, high consistency and catalytic activity. After the catalyst was used for 5 cycles in the N-arylation reaction, amorphous Cu0 reunited into crystalline copper nanoparticles with different particle sizes and its good heterogeneity in the catalytic system was confirmed after the catalyst recovery.


Amorphous Cu Carbon nanofiber N-Arylation reaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Lu X., Roberts S., Franklin G. J., Davie C., Med. Chem. Commum., 2018, 8, 1614CrossRefGoogle Scholar
  2. [2]
    Majid G. D., Forugh B. S., Mehdi K., Seyed M. M. S., Helv. Chim. Acta, 2017, 100, e1700082CrossRefGoogle Scholar
  3. [3]
    Kumar A., Bishnoi A. K., RSC Adv., 2015, 5 20516CrossRefGoogle Scholar
  4. [4]
    Blanchot M., Candito D. A., Larnaud F., Lautens M., Org. Lett., 2011, 13, 1486CrossRefGoogle Scholar
  5. [5]
    Bariwalab J., Eycken E. V., Chem. Soc. Rev., 2013, 42, 9283CrossRefGoogle Scholar
  6. [6]
    Baqi Y., Mueller C. E., Nat. Protoc., 2010, 5, 945CrossRefGoogle Scholar
  7. [7]
    Kundu D., Bhadra S., Mukherjee N., Sreedhar B., Ranu B. C., Chem. Eur. J., 2013, 19, 15759CrossRefGoogle Scholar
  8. [8]
    Bissember A. C., Lundgren R. J., Creutz S. E., Angew. Chem. Int. Ed., 2013, 52, 5129CrossRefGoogle Scholar
  9. [9]
    Liu X. M., Chen W., Ni B. Q., Chen X. Z., Qian C., Ge X., Chinese J. Org. Chem., 2018, 38, 1703CrossRefGoogle Scholar
  10. [10]
    Lefevre G., Tlili A., Taillefer M., Adamo C., Ciofini I., Jutand A., Dalton Trans., 2013, 42, 5348CrossRefGoogle Scholar
  11. [11]
    Lefevre G., Franc G., Tlili A., Adamo C., Taillefer M., Ciofini I., Jutand A., Organometallics, 2012, 31, 7694CrossRefGoogle Scholar
  12. [12]
    Wang H., Zhang Z., Zhou H., Wang T., Su J., Tong X., Tian H., Chem. Commun., 2016, 52, 5459CrossRefGoogle Scholar
  13. [13]
    Gawande M. B., Goswami A., Felpin F. X., Asefa T., Huang X. X., Silva R., Zou X. X., Zboril R., Varma R. S., Chem. Rev., 2016, 116, 3722CrossRefGoogle Scholar
  14. [14]
    Jeonga C., Kima T., Kima J., Suh Y. W., Appl. Catal. A: Gen., 2017, 541, 35CrossRefGoogle Scholar
  15. [15]
    Milon B., Mousumi P., Debanjan D., Riya M., Tarakdas B., Nanotechnology, 2018, 29, 325102CrossRefGoogle Scholar
  16. [16]
    Huang H. B., Huang W. J., Xu Y., Ye X. G., Wu M. Y., Shao Q. M., Ou G. C., Peng Z. R., Shi J. X., Chen J. D., Feng Q. Y., Zan Y. J., Huang H. L., Hu P., Catal. Today, 2015, 258, 627CrossRefGoogle Scholar
  17. [17]
    Ahmed A., Elvati P., Violi A., RSC Adv., 2015, 5, 35033CrossRefGoogle Scholar
  18. [18]
    Baig N. B. R., Varma R. S., Curr. Org. Chem., 2013, 17, 2227CrossRefGoogle Scholar
  19. [19]
    Zhao Y. J., Zhang Y. Q., Wang Y., Zhang J., Xu Y., Wang S. P., Ma X. B., Appl. Catal. A: Gen., 2017, 539, 59CrossRefGoogle Scholar
  20. [20]
    Huang X. M., Ma M., Miao S., Zheng Y. P., Chen M. S., Shen W. J., Appl. Catal. A: Gen., 2017, 531, 79CrossRefGoogle Scholar
  21. [21]
    Puthiaraj P., Ahn W. S., Catal. Sci. Technol., 2016, 6, 1701CrossRefGoogle Scholar
  22. [22]
    Mondal J., Biswas A., Chiba S., Zhao Y., Sci. Rep., 2015, 5, 1Google Scholar
  23. [23]
    Barot N., Patel S. B., Kaur H., J. Mol. Catal. A, 2016, 423, 77CrossRefGoogle Scholar
  24. [24]
    Jin Z., Xiao M. D., Bao Z. H., Wang P., Wang J. F., Angew. Chem. Int. Ed., 2012, 51, 6406CrossRefGoogle Scholar
  25. [25]
    Amadine O., Maati H., Abdelouhadi K., Fihri A., Kazzouli S., Len C., Bouari A., Solhy A., J. Mol. Catal. A, 2014, 395, 409CrossRefGoogle Scholar
  26. [26]
    Zheng X., Fu W. Q., Xiong J., Xi J. C., Ni X. J., Tang T. D., Catal. Today, 2016, 264, 152CrossRefGoogle Scholar
  27. [27]
    Yue C. J., Gan M. M., Gu L. P., Zhuang Y. F., J. Taiwan Inst. Chem. Eng., 2014, 45, 1443CrossRefGoogle Scholar
  28. [28]
    Feng Y., McGuireb G. E., Shenderovac O. A., Ked H., Burkett S. L., Thin Solid Films, 2016, 615, 116CrossRefGoogle Scholar
  29. [29]
    Hannula P. M., Peltonen A., Aromaa J., Janas D., Lundstrom M., Wilson B. P., Koziol K., Forsen O., Carbon, 2016, 107, 281CrossRefGoogle Scholar
  30. [30]
    Wang Q., Li C. P., Bai J., Sun W. Y., Wang J. Z., J. Inorg. Organomet. Polym., 2016, 26, 488CrossRefGoogle Scholar
  31. [31]
    Zhang C. L., Li C. P., Bai J., Li H. Y., Catal. Lett., 2015, 145, 1764CrossRefGoogle Scholar
  32. [32]
    Movahed S. K., Dabiri M., Bazgir A., Appl. Catal. A: Gen., 2014, 481, 79CrossRefGoogle Scholar
  33. [33]
    Ghosh P., Yusop M. Z., Ghosh D., Hayashi A., Hayashi Y., Tanemura M., Chem. Commun., 2011, 47, 4820CrossRefGoogle Scholar
  34. [34]
    Li H. Q., Li C. P., Bai J., Zhang C. L., Sun W. Y., RSC Adv., 2014, 4, 48362CrossRefGoogle Scholar
  35. [35]
    Shu J., Ma R., Shui M., Wang Y., Long N. B., Wang D. J., Ren Y. L., Zhang R. F., Zheng W. D., Gao S., RSC Adv., 2012, 2, 8323CrossRefGoogle Scholar
  36. [36]
    Li H. Y., Bai J., Wang J. Z., Li C. P., Mol. Catal., 2017, 431, 49CrossRefGoogle Scholar
  37. [37]
    Yang L., Wu C. Q., Ruan M. B., Yang Y. Q., Zhao Y. X., Niu J. J., Yang W., Tetrahedron Lett., 2012, 53, 4288CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  • Junzhong Wang
    • 1
  • Hengyu Li
    • 1
  • Dongdong Zhang
    • 1
  • Jie Bai
    • 1
    Email author
  1. 1.Chemical Engineering CollegeInner Mongolia University of TechnologyHohhotP. R. China

Personalised recommendations