Advertisement

Chemical Research in Chinese Universities

, Volume 35, Issue 2, pp 193–199 | Cite as

Detection of Amines in Lamb Spoilage by Optical Waveguide Sensor Based on Bromophenol Blue-Silicon Composite Film

  • Sayyara Koxmak
  • Tajiguli Yimamumaimaiti
  • Hannikezi Abdukeremu
  • Patima Nizamidin
  • Abliz YimitEmail author
Article
  • 6 Downloads

Abstract

We herein report the development of a bromophenol blue(BPB)-silicone composite film/K+-exchange glass optical waveguide(OWG) sensor for the detection of amines produced during the spoilage of lamb. The optical and structural properties of the sensitive thin film were studied by ultraviolet -visible(UV-Vis) spectroscopy, and the light source of the OWG detecting system was selected. Gas sensing measurements showed that the sensor exhibited a good selectivity, high sensitivity, and short response-recovery time towards volatile amine gases in the 0.00117— 11.72 mg/g range. The as-prepared optical waveguide device was subsequently applied in the determination of gases (namely trimethylamine, dimethylamine, and ammonia) emitted from the lamb samples(5 g) stored at room temper ature( 25 °C) and in a refrigerator(5 °C) for 0—4 d, and the total volatile basic nitrogen(TVB-N) contents were detected by UV-Vis spectroscopy, and the results were compared with those obtained using our detector. It was found that the sensing element was capable of detecting mixed gases produced by the decomposition of lamb samples in a refrigerator for 0.5 h, where the TVB-N content was lower than 35 μg/g.

Keywords

Optical waveguide sensor Composite film Amine gas Lamb freshness detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Naila A., Flint S., Fletcher G., Bremer P., Meerdink G., Journal of Food Science, 2010, 75, R139Google Scholar
  2. [2]
    Heising J. K., Bartels P. V., Majs V. B., Dekker M., Journal of Food Engineering, 2014, 124, 80CrossRefGoogle Scholar
  3. [3]
    Morsy M. K., Zór K., Kostesha N., Alstrøm T. S., Heiskanen A., El-Tanahi H., Sharoba A., Papkovsky D., Larsen J., Khalaf H., Jakobsen M. H., Emneus J., Food Control, 2016, 60, 346CrossRefGoogle Scholar
  4. [4]
    Burman Å. U., Ström K. H. U., Journal of Chemical & Engineering Data, 2013, 58, 257CrossRefGoogle Scholar
  5. [5]
    Saad A. A., El-Sikaily A. M. A., El-Badawi E. S., El-Sawaf G. A., Shaheen N. E., Omar M. M., Zakaria M. A., Arabian Journal of Chemistry, 2016, 9, S787Google Scholar
  6. [6]
    Chang L. Y., Chuang M. Y., Zan H. W., Meng H. F., Lu C. J., Yeh P. H., Chen J. N., ACS Sens., 2017, 2, 531CrossRefGoogle Scholar
  7. [7]
    Li Z., Suslick K. S., ACS Sens., 2016, 1, 1330CrossRefGoogle Scholar
  8. [8]
    Adhoum N., Monser L., Sadok S., El-Abed A., Greenway G. M., Uglow R. F., Analytica Chimica Acta, 2003, 478, 53CrossRefGoogle Scholar
  9. [9]
    Heising J. K., Dekker M., Bartels P. V., Boekel M. V., Journal of Food Engineering, 2012, 110, 254CrossRefGoogle Scholar
  10. [10]
    Schaude C., Meindl C., Frohlich E., Attard J., Mohr G. J., Talanta, 2017, 170, 481CrossRefGoogle Scholar
  11. [11]
    Argyri A. A., Mallouchos A., Panagou E. Z., Nychas G. J., International Journal of Food Microbiology, 2015, 193, 51CrossRefGoogle Scholar
  12. [12]
    Mikš-Krajnik M., Yoon Y. J., Yuk H. G., Food Science & Biotechnology, 2015, 24, 361CrossRefGoogle Scholar
  13. [13]
    Kim Y., Son S.-H., Lee T. S., Molecular Crystals and Liquid Crystals, 2014, 600, 179CrossRefGoogle Scholar
  14. [14]
    Pu Y., Wang W., Alfano R. R., Applied Spectroscopy, 2013, 67, 210CrossRefGoogle Scholar
  15. [15]
    Yano Y., Yokoyama K., Karube I., Lebensmittel-Wissenschaft und-Technologie, 1996, 29, 498CrossRefGoogle Scholar
  16. [16]
    Wang Q., Xie Y. F., Zhao W. J., Li P., Qian H., Wang X. Z., Anal. Methods, 2014, 6, 2965CrossRefGoogle Scholar
  17. [17]
    Yimit A., Itoh K., Murabayashi M., Sensors & Actuators B: Chemical, 2003, 88, 239CrossRefGoogle Scholar
  18. [18]
    Yimit A., Rossberg A. G., Amemiya T., Itoh K., Talanta, 2005, 65, 1102CrossRefGoogle Scholar
  19. [19]
    Ablat H., Yimit A., Mahmut M., Itoh K., Anal. Chem., 2008, 80, 7678CrossRefGoogle Scholar
  20. [20]
    Chattopadhyaya M., Murugan A. N., Rinkevicius Z., J. Phys. Chem. A, 2016, 120, 7175CrossRefGoogle Scholar
  21. [21]
    Courbat J., Briand D., Damon-Lacoste J., Wollenstein J., de Rooij N. F., Sensors & Actuators B: Chemical, 2009, 143, 62CrossRefGoogle Scholar
  22. [22]
    Hu Y., Ma X., Zhang Y., Che Y., Zhao J., ACS Sens., 2016, 1, 22CrossRefGoogle Scholar
  23. [23]
    Zhang K., Peng K. H., Du H. F., J. Preventive Med. Inf., 2009, 1, 78Google Scholar
  24. [24]
    Xu Z. W., Xu J., Xu Q. B., Dong J. F., Opto-Electronic Engineering, 2011, 38, 75Google Scholar
  25. [25]
    Yimit A., Itoh K., Murabayashi M., Electrochemistry, 2001, 69, 863Google Scholar
  26. [26]
    Tuerdi G., Kari N., Yan Y., Nizamidin P., Yimit A., Sensors, 2017, 17, 2717CrossRefGoogle Scholar
  27. [27]
    Abdurahman R., Yimit A., Ablat H., Mahmut M., Wang J. D., Itoh K., Analytica Chimica Acta, 2010, 658, 63CrossRefGoogle Scholar
  28. [28]
    Patime Y., Abliz Y., Ebeyla R., Patima N., Chem. Res. Chinese Universities, 2012, 28, 682Google Scholar
  29. [29]
    Winans R., Journal of Chemical Education, 1975, 52Google Scholar
  30. [30]
    Nizamidin P., Yin Y., Turdi G., Yimit A., Analytical Letters, 2018, 51, 1CrossRefGoogle Scholar
  31. [31]
    Lavers C. R., Itoh K., Wu S. C., Murabayashi M., Mauchline I., Steward G., Stout T., Sensors & Actuators B: Chemical, 2000, 69, 85CrossRefGoogle Scholar
  32. [32]
    Simon I., Bârsan N., Bauer M., Weimar U., Sensors & Actuators B: Chemical, 2001, 73, 1CrossRefGoogle Scholar
  33. [33]
    Qiao L., Tang X., Dong J., Food Chem., 2017, 237, 1179CrossRefGoogle Scholar
  34. [34]
    Crowley K., Pacquit A., Hayes J., King T. L., Diamond D., Sensors, 2005, 754Google Scholar
  35. [35]
    Wang Q., Xie Y. F., Zhao W. J., Li P., Qian H., Wang X. Z., Analytical Methods, 2014, 6, 2965CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  • Sayyara Koxmak
    • 1
  • Tajiguli Yimamumaimaiti
    • 2
  • Hannikezi Abdukeremu
    • 1
  • Patima Nizamidin
    • 1
  • Abliz Yimit
    • 1
    Email author
  1. 1.College of Chemistry and Chemical EngineeringXinjiang UniversityUrumqiP. R. China
  2. 2.State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation of Chemistry for Life Science, School of Chemistry and Chemical EngineeringNanjing UniversityNanjingP. R. China

Personalised recommendations