Advertisement

Chemical Research in Chinese Universities

, Volume 35, Issue 4, pp 735–741 | Cite as

Carboxyl-functionalized Nanocellulose Reinforced Nanocomposite Proton Exchange Membrane

  • Xue Yang
  • Yingcong Wei
  • Xuefeng Chu
  • Qi Zhao
  • Wenling Yan
  • Chenjun Dong
  • Baijun Liu
  • Zhaoyan Sun
  • Wei HuEmail author
  • Niaona ZhangEmail author
Article
  • 15 Downloads

Abstract

Nanocellulose(NCC) was prepared through the acid hydrolysis of microcellulose(MCC) and was reacted with maleic anhydride to obtain carboxyl-functionized nanocellulose(MA-NCCs). The presence of −OH and −SO3H on the surface of rod-like MA-NCC was confirmed by Fourier transform infrared spectrometry(FTIR). Sulfonated poly(aryl ether ether ketone ketone)(Ph-SPEEKK) was synthesized with bis(4-fluorophenyl-methanone) and 2-phenylhydroquinone as monomer. MA-NCC/Ph-SPEEKK nanocomposite membranes with different MA-NCCs content were prepared, and their properties were characterized. Compared with Ph-SPEEKK, MA-NCC/Ph-SPEEKK nanocomposite membrane showed better mechanical and thermal properties and higher proton conductivity. The proton conductivity of the composite membrane with 4%(mass fraction) MA-NCCs under 80 °C was 0.095 S/cm. And its tensile strength reached 30.3 MPa, which was 21.2% higher than that of Ph-SPEEKK pure polymer membrane.

Keywords

Sulfonated poly(arylether ether ketone ketone) Carboxylation Nanocellulose Proton exchange membrane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Jacobson M. Z., Colella W. G., Golden D. M., Science, 2005, 308(5730), 1901PubMedCrossRefGoogle Scholar
  2. [2]
    Wei Y. C., Shang Y. B., Ni C. J., Zhang H. Y., Li X. B., Liu B. J., Men Y. F., Zhang M. Y., Hu W., Appl. Surf. Sci., 2017, 416, 996CrossRefGoogle Scholar
  3. [3]
    Kreuer K. D., J. Med. Chem., 2001, 185(1), 29Google Scholar
  4. [4]
    Tran P. D., Morozan A., Archambault S., Heidkamp J., Chenevier P., Dau H., Fontecave M., Martinent A., Jousselme B., Artero V., Chem. Sci., 2015, 6(3), 2050PubMedPubMedCentralCrossRefGoogle Scholar
  5. [5]
    Liu B. J., Robertson G. P., Daesik K., Guiver M. D., Hu W., Jiang Z. H., Macromolecules, 2007, 40(6), 1934CrossRefGoogle Scholar
  6. [6]
    Wang X. X., Cullen D. A., Pan Y. T., Hwang S. Y., Wang M. Y., Feng Z. X., Wang J. Y., Engelhard M. H., Zhang H. G., He Y. H., Shao Y. Y., Su D., More K. L., Spendelow J. S., Wu G., Adv. Mater., 2018, 30(11), 1706758CrossRefGoogle Scholar
  7. [7]
    Yang L., Tang B., Wu P., J. Mater. Chem. A, 2015, 3(31), 15838CrossRefGoogle Scholar
  8. [8]
    Bayer T., Cunning B. V., Selyanchyn R., Nishihara M., Fujikawa S., Sasaki K., Lyth S. M., Chem. Mater., 2016, 28(13), 4805CrossRefGoogle Scholar
  9. [9]
    Spence K., Habibi Y., Dufresne A., Nanocellulose-based Composites, Springer, Berlin, 2011 CrossRefGoogle Scholar
  10. [10]
    Yu L. B., Lin J. Y., Tian F., Li X. H., Bian F. G., Wang J., J. Mater. Chem. A, 2014, 2(18), 6402CrossRefGoogle Scholar
  11. [11]
    Huq T. Z., Salmieri S., Khan A., Tien C. L., Riedi B., Fraschini C., Bouchard J., Uribe-Calderon J., Kamal M. R., Lacroix M., Carbohyd. Polym., 2012, 90(4), 1757CrossRefGoogle Scholar
  12. [12]
    Yang J., Han C. R., Duan J. F., Ma M. G., Zhang X. M., Sun R. C., Cellulose, 2013, 20(1), 227CrossRefGoogle Scholar
  13. [13]
    Peng B. L., Dhar N., Liu H. L., Tam K. C., Can. J. Chem. Eng., 2011, 89(5), 1191CrossRefGoogle Scholar
  14. [14]
    Tang Y., Yang S., Zhang N., Zhang J. H., Cellulose, 2014, 21(1), 335CrossRefGoogle Scholar
  15. [15]
    Pei A., Zhou Q., Berglund L. A., Compos. Sci. Technol., 2010, 70(5), 815CrossRefGoogle Scholar
  16. [16]
    Song Z., Xiao H., Zhao Y., Carbohyd. Polym., 2014, 111(111C), 442CrossRefGoogle Scholar
  17. [17]
    Peng Y., Gallegos S. A., Gardner D. J., Han Y. S., Cai Z. Y., Polym. Composite., 2016, 37(3), 782CrossRefGoogle Scholar
  18. [18]
    Zhou L., He H., Li M. C., Huang S. W., Mei C. T., Wu Q. L., Ind. Crop. Prod., 2018, 112, 449CrossRefGoogle Scholar
  19. [19]
    Araki J., Wada M., Kuge S., Okano T., Langmuir, 2000, 16(6), 2413CrossRefGoogle Scholar
  20. [20]
    Habibi Y., Lucia L. A., Rojas O. J., Chem. Rev., 2010, 110(6), 3479PubMedCrossRefGoogle Scholar
  21. [21]
    Kobe R., Iwamoto S., Endo T., Yoshitani K., Teramoto Y., Polymer, 2016, 97(5), 480CrossRefGoogle Scholar
  22. [22]
    Zhou L., He H., Li M. C., Huang S. W., Mei C. T., Wu Q. L. Ind. Crop. Prod., 2018, 112, 449CrossRefGoogle Scholar
  23. [23]
    Da Silva J. R. T., De O., Farias E. A., Filho E. C. S., Eiras C., Colloid. Polym. Sci., 2014, 293(4), 1049CrossRefGoogle Scholar
  24. [24]
    Li Y., Xiao H. N., Chen M. D., Song Z. P., Zhao Y., J. Mater. Sci., 2014, 49(19), 6696CrossRefGoogle Scholar
  25. [25]
    Wei Y. C., Li X. B., Hu Q. X., Ni C. J., Liu B. J., Zhang M. Y., Zhang H. X., Hu W., RSC Adv., 2016, 6(69), 65072CrossRefGoogle Scholar
  26. [26]
    Swier S., Ramani V., Fenton J. M., Kunz H. R., Shaw M. T., Weiss R. A., J. Membrane. Sci., 2005, 256(1), 122Google Scholar
  27. [27]
    Swier S., Shaw M. T., Weiss R. A., J. Membrane. Sci., 2006, 270(1/2), 22CrossRefGoogle Scholar
  28. [28]
    Cheng B., Zhang H. M., Xiao S. H., Zhang Y., Mai Z. S., Li X. F., J. Membrane. Sci., 2011, 376(1/2), 170Google Scholar
  29. [29]
    Chen Z., Du X. A., Liu Y., Ju Y. Y., Song S. K., Dong L. J., J. Mater. Chem. A, 2018, 6(31), 15191CrossRefGoogle Scholar
  30. [30]
    Wang Q., Chen Z., Deng S. F., Song S. K., Xiong C. X., Dong L. J., Chem. Eng. J., 2017, 328, 343CrossRefGoogle Scholar
  31. [31]
    Bondeson D., Mathew A., Oksman K., Cellulose, 2006, 13(2), 171CrossRefGoogle Scholar
  32. [32]
    Jouanneau J., Mercier R., Gonon L., Gebel G., Macromolecules, 2007, 40(4), 983CrossRefGoogle Scholar
  33. [33]
    Yin Y., Fang J., Kita H., Okamoto K., Cheminform, 2003, 34(34), 328CrossRefGoogle Scholar
  34. [34]
    Xing P. X., Robertson G. P., Guiver M. D., Mikhailenko S. D., Wang K. P., Kaliaguine S., J. Membrane. Sci., 2004, 229(1), 95CrossRefGoogle Scholar
  35. [35]
    Choi S. H., Nho Y. C., Radiat. Phys. Chem., 2000, 57(2), 187CrossRefGoogle Scholar
  36. [36]
    Palani P. B., Kannan R., Rajashabala S., Rajendran S., Velraj G., Ionics, 2015, 21(2), 507CrossRefGoogle Scholar
  37. [37]
    Kreuer K. D., Rabenau A., Weppner W., Angew. Chem. Int. Edit., 1982, 21(3), 208CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  • Xue Yang
    • 1
  • Yingcong Wei
    • 2
  • Xuefeng Chu
    • 3
  • Qi Zhao
    • 1
  • Wenling Yan
    • 1
  • Chenjun Dong
    • 1
  • Baijun Liu
    • 4
  • Zhaoyan Sun
    • 5
  • Wei Hu
    • 1
    Email author
  • Niaona Zhang
    • 1
    Email author
  1. 1.College of Chemical EngineeringChangchun University of TechnologyChangchunP. R. China
  2. 2.State Key Laboratory of Photocatalysis on Energy and Environment, College of ChemistryFuzhou UniversityFuzhouP. R. China
  3. 3.School of Electrical and Electronic Information EngineeringJilin Jianzhu UniversityChangchunP. R. China
  4. 4.College of ChemistryJilin UniversityChangchunP. R. China
  5. 5.State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China

Personalised recommendations