Design, Synthesis, Biological Activity and Molecular Docking Study of Coumarin Derivatives Bearing 2-Methylbiphenyl Moiety

  • Junjie MaEmail author
  • Kun Huang
  • Xin Ni
  • Roufen Chen
  • Boxuan Xu
  • Cuifang WangEmail author


A hybrid pharmacophore approach was used to design and synthesize a series of coumarin derivatives bearing 2-methylbiphenyl moiety, which were evaluated for their in vitro anticancer activities against four cancer cell lines(MCF-7, A549, H460 and HT29) and PD-1/PD-L1 inhibitory activities. Moreover, several compounds with excellent anticancer activities were selected to evaluate the cytotoxicities against one normal cell line(HEK-293). The most promising compound 11o showed the best anticancer activities against the four tested cancer cell lines with the IC50 values of 6.45, 8.65, 6,57 and 8.13 μmol/L, respectively, and displayed weak cytotoxicity on the normal cell(HEK-293). Furthermore, screening of PD-1/PD-L1inhibitory activity revealed that compound 11o could effectively inhibit the binding of PD-1/PD-L1, and the binding interactions of compound 11o with PD-L1 protein were explored by molecular docking. All above evidences showed that compound 11o might be worthy of further study as a valuable leading compound for the treatment of cancer.


Coumarin 2-Methylbiphenyl Anticancer activity PD-1/PD-L1 inhibitory activity Molecular docking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Kim S. K., Kalimuthu S., Handbook of Anticancer Drugs from Marine Origin, Springer, Cham, 2015CrossRefGoogle Scholar
  2. [2]
    Hu Y., Shen Y., Wu X., Tu X., Wang G. X., Eur. J. Med. Chem., 2018, 143, 958CrossRefGoogle Scholar
  3. [3]
    Weigt S., Huebler N., Strecker R., Braunbeck T., Broschard T. H., Reprod. Toxicol., 2012, 33(2), 133CrossRefGoogle Scholar
  4. [4]
    Pérez-Cruz K., Moncada-Basualto M., Morales-Valenzuela J., Barriga-González G., Navarrete-Encina P., Núñez-Vergara L., Squella J. A., Olea-Azar C., Arab. J. Chem., 2018, 11(4), 525CrossRefGoogle Scholar
  5. [5]
    Keri R. S., Sasidhar B. S., Nagaraja B. M., Santos M. A., Eur. J. Med. Chem., 2015, 100, 257CrossRefGoogle Scholar
  6. [6]
    Koparde S., Hosamani K. M., Kulkarni V., Joshi S. D., Chem. Dat. Collect., 2018, 15/16, 197CrossRefGoogle Scholar
  7. [7]
    Ghanei-Nasab S., Khoobi M., Hadizadeh F., Marjani A., Moradi A., Nadri H., Emami S., Foroumadi A., Shafiee A., Eur. J. Med. Chem., 2016, 121, 40CrossRefGoogle Scholar
  8. [8]
    Shen Y. F., Liu L., Feng C. Z., Hu Y., Chen C., Wang G. X., Zhu B., Fish Shellfish Immunol., 2018, 81, 57CrossRefGoogle Scholar
  9. [9]
    Escudero G. E., Laino C. H., Echeverría G. A., Piro O. E., Martini N., Rodríguez A. N., Martínez M. J. J., López T. L. L., Ferrer E. G., Williams P. A. M., Chem. Biol. Interact., 2016, 249, 46CrossRefGoogle Scholar
  10. [10]
    Woo L. W. L., Ganeshapillai D., Thomas M. P., Sutcliffe O. B., Malini B., Mahon M. F., Purohit A., Potter B. V. L., ChemMedChem, 2011, 6(11), 2019CrossRefGoogle Scholar
  11. [11]
    Stefanachi A., Favia A. D., Nicolotti O., Leonetti F., Pisani L., Catto M., Zimmer C., Hartmann R. W., Carotti A., J. Med. Chem., 2011, 54(6), 1613CrossRefGoogle Scholar
  12. [12]
    Reddy N. S., Gumireddy K., Mallireddigari M. R., Cosenza S. C., Venkatapuram P., Bell S. C., Reddy E. P., Reddy M. V. R., Biorg. Med. Chem., 2005, 13(9), 3141CrossRefGoogle Scholar
  13. [13]
    Kusuma B. R., Khandelwal A., Gu W., Brown D., Liu W., Vielhauer G., Holzbeierlein J., Blagg B. S. J., Biorg. Med. Chem., 2014, 22(4), 1441CrossRefGoogle Scholar
  14. [14]
    Wu X. Q., Huang C., Jia Y. M., Song B. A., Li J., Liu X. H., Eur. J. Med. Chem., 2014, 74, 717CrossRefGoogle Scholar
  15. [15]
    Guzik K., Zak K. M., Grudnik P., Magiera K., Musielak B., Törner R., Skalniak L., Dömling A., Dubin G., Holak T. A., J. Med. Chem., 2017, 60(13), 5857CrossRefGoogle Scholar
  16. [16]
    Zak K. M., Grudnik P., Guzik K., Zieba B. J., Musielak B., Dömling A., Dubin G., Holak T. A., Oncotarget, 2016, 7(21), 30323CrossRefGoogle Scholar
  17. [17]
    Chupak L. S., Zhang X. F., Compounds Useful as Immunomodulators, WO2015034820, 2015Google Scholar
  18. [18]
    Pan S., Wu X., Jiang J., Gao W., Wan Y., Cheng D., Han D., Liu J., Englund N. P., Wang Y., Peukert S., Miller-Moslin K., Yuan J., Guo R., Matsumoto M., Vattay A., Jiang Y., Tsao J., Sun F., Pferdekamper A. C., Dodd S., Tuntland T., Maniara W., Kelleher J. F., Yao Y. M., Warmuth M., Williams J., Dorsch M., ACS Medicinal Chemistry Letters, 2010, 1(3), 130CrossRefGoogle Scholar
  19. [19]
    Tauchi T., Arthrit. Res. Ther., 2012, 14(Suppl. 1), O43Google Scholar
  20. [20]
    Fendrich V., Wiese D., Waldmann J., Lauth M., Heverhagen A. E., Rehm J., Bartsch D. K., Ann. Surg., 2011, 254(5), 818CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  1. 1.School of MedicineHuaqiao UniversityQuanzhouP. R. China
  2. 2.Key Laboratory of Structure-based Drug Design and DiscoveryMinistry of Education, Shenyang Pharmaceutical UniversityShenyangP. R. China
  3. 3.College of Oceanology and Food ScienceQuanzhou Normal UniversityQuanzhouP. R. China

Personalised recommendations