Chemical Research in Chinese Universities

, Volume 35, Issue 2, pp 216–220 | Cite as

Approach to 2′-(Dialkylamino)-1-alkyl-4′H-spiro[indoline-3,5′- oxazole]-2,4′-diones and 1,3-Oxazin-4-ones via Cyclization of Vilsmeier Salts with α-Hydroxy and β-Carbonyl Amides

  • Jianan Dai
  • Bengen Liu
  • Zhonglin Wei
  • Jungang Cao
  • Dapeng Liang
  • Haifeng DuanEmail author
  • Yingjie LinEmail author


A straightforward and efficient synthetic method of 2′-(dialkylamino)-1-alkyl-4′H-spiro[indoline-3,5′- oxazole]-2,4′-diones and 2-(dialkylamino)-5,6-dihydro-4H-naphtho[2,1-e][1,3]oxazin-4-one derivatives have been developed from α-hydroxy and β-carbonyl amides and various Vilsmeier salts. A wide range of heterocyclic compounds were obtained in excellent yields(up to 97%), which will provide promising candidates for chemical biology and drug discovery.


Spirooxindole unit 2-Oxazolin-4-ones core structure 3-Oxazin-4-ones core structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2019_8307_MOESM1_ESM.pdf (4.5 mb)
Approach to 2′-(Dialkylamino)-1-alkyl-4′H-spiro[indoline-3,5′- oxazole]-2,4′-diones and 1,3-Oxazin-4-ones via Cyclization of Vilsmeier Salts with α-Hydroxy and β-Carbonyl Amides


  1. [1]
    Trost B. M., Brennan M. K., Synthesis, 2009, 18(2009), 3003CrossRefGoogle Scholar
  2. [2]
    Zhou F., Liu Y. L, Zhou J., Adv. Synth. Catal., 2010, 352(9), 1381CrossRefGoogle Scholar
  3. [3]
    Singh G. S., Desta Z. Y., Chem. Rev., 2012, 112(11), 6104CrossRefGoogle Scholar
  4. [4]
    Elderfield R. C., Gilman R. E., Phytochemistry, 1972, 11(1), 339CrossRefGoogle Scholar
  5. [5]
    Kosuge T., Tsuji K., Hirai K., Fukuyama T., Chem. Pharm. Bull., 1985, 33(7), 3059CrossRefGoogle Scholar
  6. [6]
    Jiang X., Cao Y., Wang Y., Liu L., Shen F., Wang R., J. Am. Chem. Soc., 2010, 132(43), 15328CrossRefGoogle Scholar
  7. [7]
    Suchy M., Kutschy P., Monde K., Goto H., Harada N., Takasugi M., Dzurilla M., Balentová E., J. Org. Chem., 2001, 66(11), 3940CrossRefGoogle Scholar
  8. [8]
    Mitsuo T., Kenji M., Nobukatsu K., Akira S., Chem. Lett., 1987, 16(8), 1631CrossRefGoogle Scholar
  9. [9]
    Shen L. T., Jia W. Q., Ye S., Angew. Chem. Int. Ed., 2013, 52(2), 585CrossRefGoogle Scholar
  10. [10]
    Bencivenni G., Wu L. Y, Mazzanti A., Giannichi B., Pesciaioli F., Song M. P., Bartoli G., Melchiorre P., Angew. Chem. Int. Ed., 2009, 48(39), 7200CrossRefGoogle Scholar
  11. [11]
    Subba R. B. V., Swathi V., Swain M., Bhadra M. P., Sridhar B., Satyanarayana D., Jagadeesh B., Org. Lett., 2014, 16(24), 6267CrossRefGoogle Scholar
  12. [12]
    Piou T., Neuville L., Zhu J., Angew. Chem. Int. Ed, 2012, 51(46), 11561CrossRefGoogle Scholar
  13. [13]
    Jaegli S., Erb W., Retailleau P., Vors J. P., Neuville L., Zhu J., Chem. Eur. J., 2010, 16(20), 5863CrossRefGoogle Scholar
  14. [14]
    Ruck R. T., Huffman M. A., Kim M. M., Shevlin M., Kandur W. V., Davies I. W., Angew. Chem. Int. Ed., 2008, 47(25), 4711CrossRefGoogle Scholar
  15. [15]
    Kausar N., Masum A. A., Islam M. M., Das A. R., Mol. Divers., 2017, 21(2), 325CrossRefGoogle Scholar
  16. [16]
    Hajra S., Aziz S. M., Jana B., Mahish P., Das D., Org. Lett., 2016, 18(3), 532CrossRefGoogle Scholar
  17. [17]
    Wei F., Huang H. Y., Zhong N. J., Gu C. L., Wang D., Liu L., Org. Lett., 2015, 17(7), 1688CrossRefGoogle Scholar
  18. [18]
    Gao L., Zha Y., Tao S., Gao Y., Chen M., Jiang L., Rong L., Res. Chem. Intermed., 2015, 41(8), 5627CrossRefGoogle Scholar
  19. [19]
    Moffett R. B., J. Heterocycl. Chem., 1980, 17(4), 753CrossRefGoogle Scholar
  20. [20]
    Herrin T. R., Pauvlik J. M., Schuber E. V., Geiszler A. O., J. Med. Chem., 1975, 18(12), 1216CrossRefGoogle Scholar
  21. [21]
    Harnden M. R., Rasmussen R. R., J. Med. Chem., 1970, 13(2), 305CrossRefGoogle Scholar
  22. [22]
    Dirlam J. P., Clark D. A., Hecker S. J., J. Org. Chem., 1986, 51(25), 4920CrossRefGoogle Scholar
  23. [23]
    Kassick A. J., Jiang J., Bunda J., Wilson D., Bao J., Lu H., Lin P., Ball R. G., Doss G. A., Tong X., Tsao K. L. C., Wang H., Chicchi G., Karanam B., Tschirret-Guth R., Samuel K., Hora D. F., Kumar S., Madeira M., Eng W., Hargreaves R., Purcell M., Gantert L., Cook J., DeVita R. J., Mills S. G., J. Med. Chem., 2013, 56(14), 5940CrossRefGoogle Scholar
  24. [24]
    Akba E., Aslanolu F., Heteroat. Chem., 2006, 17(1), 8CrossRefGoogle Scholar
  25. [25]
    Morrison R., Al-Rawi J. M. A., Jennings I. G., Thompson P. E., Angove M. J., Eur. J. Med. Chem., 2016, 110(3), 326CrossRefGoogle Scholar
  26. [26]
    Ihmaid S., Al-Rawi J., Bradley C., Angove M. J., Robertson M. N., Clark R. L., Biorg. Med. Chem., 2011, 19(13), 3983CrossRefGoogle Scholar
  27. [27]
    Morrison R., Belz T., Ihmaid S. K., Al-Rawi J. M. A., Angove M., J. Med. Chem. Res., 2014, 23(11), 4680CrossRefGoogle Scholar
  28. [28]
    Sato M., Kanuma N., Kato T., Chem. Pharm. Bull., 1984, 32(1), 106CrossRefGoogle Scholar
  29. [29]
    Sato M., Yoneda N., Kaneko C., Chem. Pharm. Bull., 1986, 34(2), 621CrossRefGoogle Scholar
  30. [30]
    Su D., Duan H., Wei Z., Cao J., Liang D., Lin Y., Tetrahedron Lett., 2013, 54(50), 6959CrossRefGoogle Scholar
  31. [31]
    Liu B., Su D., Wei Z., Cao J., Liang D., Lin Y., Duan H., Chem. Lett., 2017, 46(2), 249CrossRefGoogle Scholar
  32. [32]
    Zhang Q., Li R., Zhai Y., Liu F., Gao G., Chem. Res. Chinese Universities., 2010, 26(3), 394CrossRefGoogle Scholar
  33. [33]
    Wang J., Yuan Y., Xiong R., Zhang-Negrerie D., Du Y., Zhao K., Org. Lett., 2012, 14(9), 2210CrossRefGoogle Scholar
  34. [34]
    Cui L. Q, Dong Z. L, Liu K., Zhang C., Org. Lett., 2011, 13(24), 6488CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  1. 1.Department of Organic Chemistry, College of ChemistryJilin UniversityChangchunP. R. China

Personalised recommendations