Advertisement

Chemical Research in Chinese Universities

, Volume 35, Issue 2, pp 221–228 | Cite as

Synthesis and Biological Evaluation of 3,3-Dimethyl-1-(1H-1,2,4-triazole-1-yl)butan-2-One Derivatives as Plant Growth Regulators

  • Guangrong Cai
  • Guanqiang Zuo
  • Dianfeng ZhengEmail author
  • Naijie FengEmail author
Article
  • 8 Downloads

Abstract

We synthesized nine novel triazole-compounds and investigated their plant growth regulatory activity. Compound CGR3, with methoxyacyl on 3-position of triazole ring, showed better activity, promoting root length not only for mungbean, but also for wheat. Additionally, CGR3 changed the level of endogenous hormones in mungbean roots, the most obvious effect was the increase of IAA, being 4.9 times greater than that of the control at the 96th hour after treatment. Among the synthesized new 1,2,4-triazol derivatives, CGR3 could be applied as a new agrochemical, functioning as a root growth stimulant, which promotes primary root length, influences the levels of endogenous hormones(IAA, ABA and GA3) to play an important role in controlling the primary root development.

Keywords

1,2,4-Triazole derivatives Plant growth regulatary activity Roots 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2019_8303_MOESM1_ESM.pdf (4.3 mb)
Synthesis and Biological Evaluation of 3,3-Dimethyl-1-(1H-1,2,4-triazole-1-yl)butan-2-One Derivatives as Plant Growth Regulators

References

  1. [1]
    Erhardt H., Mohr F., Kirsch S. F., Chemical Communications, 2015, 52(3), 545Google Scholar
  2. [2]
    Petrikkos G., Skiada A., International Journal of Antimicrobial Agents, 2007, 30(2), 108Google Scholar
  3. [3]
    Peng X. M., Cai G. X., Zhou C. H., Current Topics in Medicinal Chemistry, 2013, 13(16), 1963Google Scholar
  4. [4]
    Todoroki Y., Kobayashi K., Yoneyama H., Hiramatsu S., Jin M. H., Watanabe B., Mizutani M., Hirai N., Bioorganic & Medicinal Chemistry, 2008, 16(6), 3141Google Scholar
  5. [5]
    Asami T., Min Y. K., Nagata N., Yamagishi K., Takatsuto S., Fujioka S., Murofushi N., Yamaguchi I., Yoshida S., Plant Physiology, 2000, 123(1), 93Google Scholar
  6. [6]
    Saito S., Hirai N., Matsumoto C., Ohigashi H., Ohta D., Sakata K., Mizutani S. M., Plant Physiology, 2004, 134(4), 1439Google Scholar
  7. [7]
    Funaki Y., Oshita H., Tanaka S., Yamamoto S., Kato T., 1-Phenyl-2-azolyl-4,4-dimethyl-1-pentent-3-ols and the Fungicidal Use Thereof, US 4203995A, 1980Google Scholar
  8. [8]
    Izumi K., Nakagawa S., Kobayashi M., Oshio H., Sakurai A., Takahashi N., Plant & Cell Physiology, 1998, 29(1), 97Google Scholar
  9. [9]
    Zhang M., Duan L., Tian X., He Z., Li J., Wang B., Li Z., Journal of Plant Physiology, 2007, 164(6), 709Google Scholar
  10. [10]
    Lucini L., Rouphael Y., Cardarelli M., Bonini P., Baffi C., Colla G. A., Frontiers in Plant Science, 2018, 9(472), 1Google Scholar
  11. [11]
    Saito S., Okamoto M., Shinoda S., Kushiro T., Koshiba T., Kamiya Y., Hirai N., Todoroki Y., Sakata K., Nambara E., Mizutani M., Bioscience Biotechnology & Biochemistry, 2006, 70(7), 1731Google Scholar
  12. [12]
    Okazaki M., Kittikorn M., Ueno K., Mizutani M., Hirai N., Kondo S., Ohnishi T., Todoroli Y., Bioorganic & Medicinal Chemistry, 2012, 20(10), 3162Google Scholar
  13. [13]
    Takeuchi J., Okamoto M., Mega R., Kanno Y., Ohnishi T., Seo M., Todoroki Y., Scientific Reports, 2016, 6, 37060Google Scholar
  14. [14]
    Kamran M., Su W., Ahmad I., Meng X., Cui W., Zhang X., Mou S., Khan A., Han Q., Liu T., Scientific Reports, 2018, 8(1), 4818Google Scholar
  15. [15]
    Hampton J. G., Hebblethwaite P. D., Grass For. Sci., 1985, 40, 93Google Scholar
  16. [16]
    Leul M., Zhou W. J., Journal of Plant Growth Regulation, 1999, 18(1), 9Google Scholar
  17. [17]
    Bengough A. G., Mckenzie B. M., Hallett P. D., Valentine T. A., Journal of Experimental Botany, 2011, 62(1), 59Google Scholar
  18. [18]
    Thole J. M., Beisner E. R., Liu J., Venkova S. V., Strader L. C., G3-Genes Genomes, 2014, 4(7), 1259Google Scholar
  19. [19]
    Sun H., Feng F., Liu J., Zhao Q., Frontiers in Plant Science, 2018, 9(659), 1Google Scholar
  20. [20]
    Postma J. A., Schurr U., Fiorani F., Biotechnology Advances, 2014, 32(1), 53Google Scholar
  21. [21]
    Meffre P., Durand P., Branquet E., Goffic F. C. L., Synthetic Communications, 1994, 24(15), 2147Google Scholar
  22. [22]
    Holmwood G., Regel E., Substituted Triazolylmethyl Oxiranes, Process for Their Preparation and Their Application as Intermediates, US4499281, 1985Google Scholar
  23. [23]
    Cai G. R., Zhang D. F., Li B., Feng N. J., Chinese Journal Structure Chemistry, 2017, 36(4), 599Google Scholar
  24. [24]
    Stoilkova G. M., Yonova P., Ananieva K., Plant Growth Regulation, 2014, 72(3), 303Google Scholar
  25. [25]
    Kučerová D., Kollárová K., Zelko I., Vatehová Z., Lišková D., Journal of Plant Physiology, 2014, 171(7), 518Google Scholar
  26. [26]
    Segarra G., Jáuregui O., Casanova E., Trillas I., Phytochemistry, 2006, 67(4), 395Google Scholar
  27. [27]
    Reiter J., Pongó L., Dvortsák P., Journal of Heterocyclic Chemistry, 1987, 24(1), 127Google Scholar
  28. [28]
    Almajan G. L., Barbuceanu S. F., Saramet G., Almajan G. L., Draghici C., Barbuceanu F., Bancescu G., European Journal of Medicinal Chemistry, 2012, 49(31), 417Google Scholar
  29. [29]
    Stefanska J., Stepien K., Bielenica A., Szulczyk D., Miroslaw B. E., Koziol A., Sanna G., Luliano F., Madeddu S., Jozwiak M., Struga M., Medicinal Chemistry, 2016, 12(5), 478Google Scholar
  30. [30]
    Todoroki Y., Kobayashi K., Yoneyama H., Hiramatsu S., Jin M. H., Watanabe B., Mizutani M., Hirai N., Bioorganic & Medicinal Chemistry, 2008, 16(6), 3141Google Scholar
  31. [31]
    Raskin I., Annual Review of Plant Biology, 1992, 43(1), 439Google Scholar
  32. [32]
    Macmillan J., Ward D. A., Phillips A. L., Sánchezbeltrán M. J., Gaskin P., Lange T., Hedden P., Plant Physiology, 1997, 113(4), 1369Google Scholar
  33. [33]
    Wells D. M., French A. P., Naeem A., Ishaq O., Traini R., Hijazi H. I., Bennett M. J., Pridmore T. P., Philosophical Transactions of the Royal Society of London, 2012, 367, 1517Google Scholar
  34. [34]
    Jiang L., Cedrick M., Belen M. G., Carolien D. C., Lien S., Annick D. K., Franccedil B., Tom B., Stephen D., Sofie G., Journal of Experimental Botany, 2016, 67(1), 379Google Scholar
  35. [35]
    Yin C. C., Ma B., Collinge D. P., Pogson B. J., He S. J., Xiong Q., Duan K. X., Chen H., Yang C., Lu X., Wang Y. Q., Zhang W. K., Chu C. C., Sun X. H., Fang S., Chu J. F., Lu T. G., Chen S. Y., Zhang J. S., Plant Cell, 2015, 27(4), 1061Google Scholar
  36. [36]
    Fonseca S., Rosado A., Vaughan-Hirsch J., Frontiers in Plant Science, 2014, 5, 709Google Scholar
  37. [37]
    Koltai H., Dor E., Hershenhorn J., Joel D. M., Weininger S., Lekalla S., Shealtiel H., Bhattacharya C., Eliahu E., Resnick N., Barg R., Kapulnik Y., Journal of Plant Growth Regulation, 2010, 29(2), 129Google Scholar
  38. [38]
    Strader L. C., Chen G. L., Bartel B., Plant Journal, 2010, 64(5), 874Google Scholar
  39. [39]
    Desikan R., Cheung M., Bright J., Dan H., Hancock J. T., Neill S. J., Journal of Experimental Botany, 2004, 55(395), 205Google Scholar
  40. [40]
    Sah S. K., Reddy K. R., Li J., Frontiers in Plant Science, 2016, 7(571), 1Google Scholar
  41. [41]
    Muñoz-Espinoza V. A., López-Climent M. F., Casaretto J. A., Gómez-Cadenas A., Frontiers in Plant Science, 2015, 6(138), 997Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  1. 1.College of AgronomyHeilongjiang Bayi Agricultural UniversityDaqingP. R. China
  2. 2.College of AgronomyGuangdong Ocean UniversitiyZhanjiangP. R. China

Personalised recommendations