Chemical Research in Chinese Universities

, Volume 35, Issue 2, pp 304–310 | Cite as

Ultraviolet Light Assisted Hierarchical Porous Fe2O3 Catalyzing Heterogeneous Fenton Degradation of Tetracycline Under Neutral Condition with a Low Requirement of H2O2

  • Xinchen Lin
  • Feng Xie
  • Xiaodan Yu
  • Xin Tang
  • Heda Guan
  • Yu Chen
  • Wei FengEmail author


The hierarchical porous Fe2O3 particles as a novel ultraviolet light assisted heterogeneous Fenton catalysts were synthesized by bio-template synthesis method using iron nitrate as precursor at high temperature of around 550 °C. The hierarchical porous structured Fe2O3 was endowed with a large surface area and abundant pore volume, leading to the exposure of more active sites and rapid mass transfer. The synergistic effect of UV irradiation and hierarchical porous Fe2O3 improved the photo-degradation efficiency of Tetracycline(TC). The degradation efficiency of Fe2O3 catalyzing UV-Fenton system reached 97.4% after 60 min reaction, which was more substantial than Fe2O3 catalyzing Fenton system(7.6%) and UV/H2O2 system(59.2%). Moreover, the hierarchical porous Fe2O3 catalyzing UV-Fenton system exhibited an extremely wide pH range(from 3.0 to 9.0, from mildly acidic to slightly alkaline) for efficient degradation of TC. Simultaneously, the extraordinary higher degradation efficiency was based on 10 mmol/L H2O2 concentration, which was low requirement for H2O2. Further, the hierarchical porous Fe2O3 can be used for five consecutive cycles with over 95% of the original degradation efficiency. Ultraviolet light assisted heterogeneous Fenton reaction in the hierarchical porous Fe2O3 improved the •OH and O2 •‒production and Fe(III)/Fe(II) redox cycle, which consequently achieved an excellent degradation rate.


Heterogeneous Fenton Hierarchical porous Fe2O3 Biological template method Tetracycline degradation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Polubesova T., Zadaka D., Groisman L., Nir S., Water Res., 2006, 40(12), 2369CrossRefGoogle Scholar
  2. [2]
    Sarmah A. K., Meyer M. T., Boxall A. B. A., Chemosphere, 2006, 65(5), 725CrossRefGoogle Scholar
  3. [3]
    Meijide J., Gomez J., Pazos M., Sanroman M. A., J. Hazard. Mater., 2016, 319, 43CrossRefGoogle Scholar
  4. [4]
    Lan H., Wang A., Liu R., Liu H., Qu J., J. Hazard. Mater., 2015, 285, 167CrossRefGoogle Scholar
  5. [5]
    Qian X., Ren M., Zhu Y., Yue D., Han Y., Jia J., Zhao Y., Environ. Sci. Technol., 2017, 51(7), 3993CrossRefGoogle Scholar
  6. [6]
    Liu Y., Jin W., Zhao Y., Zhang G., Zhang W., Applied Catalysis B: Environmental, 2017, 206, 642CrossRefGoogle Scholar
  7. [7]
    Fei B. L., Deng N. P., Wang J. H., Liu Q. B., Long J. Y., Li Y. G., Mei X., J. Hazard. Mater., 2017, 340, 326CrossRefGoogle Scholar
  8. [8]
    Trellu C., Mousset E., Pechaud Y., Huguenot D., van Hullebusch E. D., Esposito G., Oturan M. A., J. Hazard. Mater., 2016, 306, 149CrossRefGoogle Scholar
  9. [9]
    Luo W., Zhu L., Wang N., Tang H., Cao M., She Y., Environ. Sci. Technol., 2010, 44(5), 1786CrossRefGoogle Scholar
  10. [10]
    Wang Y., Lin X., Shao Z., Shan D., Li G., Irini A., Chemical Engineering Journal, 2017, 313, 938CrossRefGoogle Scholar
  11. [11]
    Hou X., Huang X., Ai Z., Zhao J., Zhang L., J. Hazard. Mater., 2016, 310, 170CrossRefGoogle Scholar
  12. [12]
    Wang Y., Sun Y., Li W., Tian W., Irini A., Chemical Engineering Journal, 2015, 267, 1CrossRefGoogle Scholar
  13. [13]
    Christoforidis K. C., Montini T., Bontempi E., Zafeiratos S., Jaén J. J. D., Fornasiero P., Applied Catalysis B: Environmental, 2016, 187, 171CrossRefGoogle Scholar
  14. [14]
    Fischbacher A., von Sonntag C., Schmidt T. C., Chemosphere, 2017, 182, 738CrossRefGoogle Scholar
  15. [15]
    Wang Y., Fang J., Crittenden J. C., Shen C., J. Hazard. Mater., 2017, 329, 321CrossRefGoogle Scholar
  16. [16]
    Li W., Wang Y., Irini A., Chemical Engineering Journal, 2014, 244, 1CrossRefGoogle Scholar
  17. [17]
    Fan T. X., Chow S. K., Zhang D., Progress in Materials Science, 2009, 54(5), 542CrossRefGoogle Scholar
  18. [18]
    Zhang X., Dong Z., Liu S., Shi Y., Dong Y., Feng W., Sensors and Actuators B: Chemical, 2017, 243, 1224CrossRefGoogle Scholar
  19. [19]
    Liu Z., Bai H., Sun D., Applied Catalysis B: Environmental, 2011, 104, 234CrossRefGoogle Scholar
  20. [20]
    Ai L., Zhang C., Jiang J., Applied Catalysis B: Environmental, 2013, 142/143, 744Google Scholar
  21. [21]
    Zhou L., Song W., Chen Z., Yin G., Environ. Sci. Technol., 2013, 47(8), 3833CrossRefGoogle Scholar
  22. [22]
    Zhang X., Huang L., Wang Q., Dong S., Journal of Materials Chemistry A, 2017, 5(35), 18839CrossRefGoogle Scholar
  23. [23]
    Xu L., Wang J., Environ. Sci. Technol., 2012, 46(18), 10145CrossRefGoogle Scholar
  24. [24]
    Zhang H., Ran X., Wu X., J. Hazard. Mater., 2012, 241/242, 259Google Scholar
  25. [25]
    Schrank S. G., Jose H. J., Moreira R. F., Schroder H. F., Chemosphere, 2005, 60(5), 644CrossRefGoogle Scholar
  26. [26]
    Liu Y., Jin W., Zhao Y., Zhang G., Zhang W., Applied Catalysis B: Environmental, 2017, 206, 642CrossRefGoogle Scholar
  27. [27]
    Mecha A. C., Onyango M. S., Ochieng A., Momba M. N. B., Chemosphere, 2017, 186, 669CrossRefGoogle Scholar
  28. [28]
    Han S. K., Hwang T. M., Yoon Y., Kang J. W., Chemosphere, 2011, 84(8), 1095CrossRefGoogle Scholar
  29. [29]
    Giannakis S., Liu S., Carratalà A., Rtimi S., Talebi A. M., Bensimon M., Pulgarin C., J. Hazard. Mater., 2017, 339, 223CrossRefGoogle Scholar
  30. [30]
    Nietojuarez J. I., Pierzchła K., Sienkiewicz A., Kohn T., Environ. Sci. Technol., 2010, 44(9), 3351CrossRefGoogle Scholar
  31. [31]
    Xu J., Sahai N., Eggleston C. M., Schoonen M. A. A., Earth & Planetary Sciences Letters, 2013, 363, 156CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  • Xinchen Lin
    • 1
  • Feng Xie
    • 1
  • Xiaodan Yu
    • 2
  • Xin Tang
    • 1
  • Heda Guan
    • 1
  • Yu Chen
    • 1
  • Wei Feng
    • 1
    Email author
  1. 1.Key Laboratory of Groundwater Resource and Environment, Ministry of EducationCollege of New Energy and EnvironmentChangchunP. R. China
  2. 2.School of EnvironmentHarbin Institute of TechnologyHarbinP. R. China

Personalised recommendations