Advertisement

Studies on Isosorbide-enhanced Biodegradable Poly(ethylene succinate)

  • Dezhi Qu
  • Fuchen Zhang
  • Hongwei Gao
  • Qiuxia Wang
  • Yongping BaiEmail author
  • Huihui LiuEmail author
Article
  • 3 Downloads

Abstract

To improve the mechanical properties of bio-based poly(ethylene succinate), the sugar monomer isosorbide, which is relatively easy to obtain, was used as a copolymerized third monomer to synthesize poly(ethylene-co-isosorbide succinate), a 100% biomass copolyester. The effects of isosorbide on the crystallinity and thermal properties of copolyester were studied by nuclear magnetic resonance( 1H NMR), differential scanning calorimeter( DSC), and thermogravimetric(TG). Owing to its distinct rigid bicyclic structure, isosorbide can improve the glass transition temperature of the copolyester and decrease the crystallization rate, as well as accelerate the hydrol ysis of the copolyester. Simultaneously, the introduction of isosorbide can effectively improve the antistatic properties of copolyester.

Keywords

Bio-based polyester Isosorbide Poly(ethylene-co-isosorbide succinate) Antistatic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Kikko S., Katsunishi A., Static Electricity Hand Book, Maruzen, Tokyo, 1976 Google Scholar
  2. [2]
    Pillai C. K. S., Designed Monomers and Polymers, 2010, 12, 87CrossRefGoogle Scholar
  3. [3]
    Corma A., Iborra S., Velty A., Chem. Rew., 2007, 107, 2411CrossRefGoogle Scholar
  4. [4]
    Maity S. K., Renewable and Sustainable Energy Reviews, 2015, 43, 1427CrossRefGoogle Scholar
  5. [5]
    Doulabi A. S. H., Mirzadeh H., Imani M., Sharifi S., Atai M., Mehdipour-Ataei S., Polymers for Advanced Technologies, 2008, 19, 1199CrossRefGoogle Scholar
  6. [6]
    Guner F. S., Yagci Y., Erciyes A. T., Prog. Polym. Sci., 2006, 31, 633CrossRefGoogle Scholar
  7. [7]
    Zhao Y. Z., Zhao J. B., Zhang Z. Y., Zhang J. Y., Chem. Res. Chinese Universities, 2016, 32(3), 505CrossRefGoogle Scholar
  8. [8]
    Hiroe A., Ushimaru K., Tsuge T., Journal of Bioscience and Bioengineering, 2013, 115, 633CrossRefGoogle Scholar
  9. [9]
    Yang C., Zhang W., Liu R., Zhang C., Gong T., Li Q., Wang S., Song C., FEMS Microbiol Lett., 2013, 346, 56CrossRefGoogle Scholar
  10. [10]
    Rhim J. W., LWT-Food Science and Technology, 2013, 54, 477CrossRefGoogle Scholar
  11. [11]
    Zhang N., Zeng C., Wang L., Ren J., J. Polym. Environ., 2013, 21, 286CrossRefGoogle Scholar
  12. [12]
    Gu L., Qiu J., Sakai E., Chem. Res. Chinese Universities, 2017, 33(1), 143CrossRefGoogle Scholar
  13. [13]
    Chen Q., Zhu C., Thaouas G. A., Progress in Biomaterials, 2012, 1, 1CrossRefGoogle Scholar
  14. [14]
    Zhang K. J., Qiu Z. B., Chinese Journal of Polymer Science, 2017, 35, 1517CrossRefGoogle Scholar
  15. [15]
    Biron M., Thermoplastics and Thermoplastic Composites, Elsevier, Oxford, 2007, 31Google Scholar
  16. [16]
    Fooolmaun R. K., Ramjeeawon T., Int. J. Life Cycle Assess, 2013, 18, 155CrossRefGoogle Scholar
  17. [17]
    Ke H., Li D., Zhang H., Wang X., Cai Y., Huang F., Wei Q., Fibers and Polymers, 2013, 14, 89CrossRefGoogle Scholar
  18. [18]
    Chen L., Cheng H. H., Xiong J., Zhu Y. T., Zhang H. P., Xiong X., Liu Y. M., Yu J., Guo Z. X., Chinese Journal of Polymer Science, 2018, 36, 1063CrossRefGoogle Scholar
  19. [19]
    Jin C., Microbiol China, 2015, 42, 1832Google Scholar
  20. [20]
    Papageorgiou G. Z., Bikiaris D. N., Achilias D. S., Thermochimica Acta, 2007, 457, 41CrossRefGoogle Scholar
  21. [21]
    Chrissafis K., Paraskevopoulos K. M., Bikiaris D. N., Thermochimica Acta, 2006, 440, 166CrossRefGoogle Scholar
  22. [22]
    Hoang K. C., Tseng M., Shu W. J., Biodegradation, 2007, 18, 333CrossRefGoogle Scholar
  23. [23]
    Tansengco M. L., Tokiwa Y., World Journal of Microbiology and Biotechnology, 1997, 14, 133CrossRefGoogle Scholar
  24. [24]
    Tribedi P., Sil A. K., Journal of Applied Microbiology, 2014, 116, 295CrossRefGoogle Scholar
  25. [25]
    Tezuka Y., Ishii N., Kasuya K., Polymer Degradation and Stability, 2004, 84, 115CrossRefGoogle Scholar
  26. [26]
    Ishii N., Inoue Y., Shimada K., Polymer Degradation and Stability, 2007, 92, 44CrossRefGoogle Scholar
  27. [27]
    Pan H., Qiu Z., Macromolecules, 2010, 43, 1499CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinP. R. China
  2. 2.Wuxi HIT Limited Corporation & Research Institute of New MaterialsWuxiP. R. China
  3. 3.Institute of Chemical MaterialsChina Academy of Engineering PhysicsMianyangP. R. China

Personalised recommendations