Advertisement

Chemical Research in Chinese Universities

, Volume 35, Issue 2, pp 209–215 | Cite as

Separation/Extraction/Detection of Chloramphenicol Using Binary Small Molecule Alcohol-Salt Aqueous Two-phase System Coupled with High-performance Liquid Chromatography

  • Donggang Guo
  • Liang NiEmail author
  • Liang Wang
  • Li Shao
Article

Abstract

A green and sensitive sample separation and purification method coupled with high-performance liquid chromatography(HPLC) was developed for the analysis of chloramphenicol(CAP). One element small molecule alcohol-salt aqueous two-phase system(ATPS) can’t effectively adjust the polarity of the system, but binary small molecule alcohol-salt ATPS can adjust the polarity and improve the extraction efficiency of antibiotics. A binary aqueous two-phase system based on 1-propanol+2-propanol and NaH2PO4 system was formed and applied to the separation and purification of trace CAP in real samples. The influence factors on partition behaviors of CAP were discussed, including the types and mass of salts, the volume ratio of alcohol, the pH, temperature and the standing time. The optimal condition was found at pH=5.0, 2.5 g of NaH2PO4, 3.0 mL of 1-propanol and 2-propanol(volume ratio 1:1) and 30 °C by using response surface methodology. Under this optimal condition, the extraction efficiency of CAP reached 98.91%, and partition coefficient of CAP was 17.31.

Keywords

Binary small molecule alcohol aqueous two-phase system Partition behavior Chloramphenicol Extraction efficiency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Pereira J. F. B., Ventura S. P. M., Silva F. A., Shahriari S., Freire M. G., Coutinho J. A. P., Separation and Purification Technology, 2013, 113, 83CrossRefGoogle Scholar
  2. [2]
    Dde Belval S., Le Breton B., Huddleston J., Lyddiatt A., Journal of Chromatography B, 1998, 711, 19CrossRefGoogle Scholar
  3. [3]
    Vicente F. A., Malpiedi L. P., e Silva F. A., Pessoa A., Coutinho J. A. P., Ventura S. P. M., Separation and Purification Technology, 2014, 135, 259CrossRefGoogle Scholar
  4. [4]
    Pereira M. M., Cruz R. A., Almeida M. R., Lima A. S., Coutinho J. A., Freire M. G., Process Biochem., 2016, 51(6), 781CrossRefGoogle Scholar
  5. [5]
    Schwienheer C., Prinz A., Zeiner T., Merz J., J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci., 2015, 1002, 1CrossRefGoogle Scholar
  6. [6]
    Roy K., Lahiri S., Applied Radiation and Isotopes, 2009, 67(10), 1781CrossRefGoogle Scholar
  7. [7]
    Patrício P. R., Cunha R. C., Rodriguez V. S. J., Coelho Y. L., Mendes D. S. L. H., Hespanhol da Silva M. C., Separation and Purification Technology, 2016, 158, 144CrossRefGoogle Scholar
  8. [8]
    Rodrıguez O., Silverio S. C., Madeira P. P., Teixeira J. A., Macedo E. A., Industrial & Engineering Chemistry Research, 2007, 46, 8199CrossRefGoogle Scholar
  9. [9]
    Zafarani-Moattar M. T., Hamzehzadeh S., Nasiri S., Biotechnology Progress, 2011, 28(1), 146CrossRefGoogle Scholar
  10. [10]
    Hamzehzadeh S., Abbasi M., The Journal of Chemical Thermodynamics, 2015, 80, 102CrossRefGoogle Scholar
  11. [11]
    Lu Y., Chen B., Yu M., Han J., Wang Y., Tan Z. J., Food Chemistry, 2016, 210, 1CrossRefGoogle Scholar
  12. [12]
    Lu Y., Yao H., Li C., Han J., Tan Z. J., Yan Y. S., Food Chemistry, 2016, 192, 163CrossRefGoogle Scholar
  13. [13]
    Wang Y., Hu X., Han J., Ni L., Tang X., Hu Y., Food Chemistry, 2016, 194, 257CrossRefGoogle Scholar
  14. [14]
    Wysoczanska K., Macedo E. A., Journal of Chemical & Engineering Data, 2016, 61(12), 4229CrossRefGoogle Scholar
  15. [15]
    Sadeghi R., Maali M., Polymer, 2016, 83, 1CrossRefGoogle Scholar
  16. [16]
    Xu C., Dong W., Wan J., Cao X., J. Chromatogr., 2016, A1472, 44Google Scholar
  17. [17]
    Barbosa A. A., Bonomo R. C. F., Martins C. V., Fontan R. C. I., Júnior E. C. S., Minim L. A., Journal of Chemical & Engineering Data, 2016, 61(1), 3CrossRefGoogle Scholar
  18. [18]
    Hekayati J., Roosta A., Javanmardi J., Thermochimica Acta, 2016, 625, 47CrossRefGoogle Scholar
  19. [19]
    Shahriari S., Shahriari S., Journal of Molecular Liquids, 2014, 197, 65CrossRefGoogle Scholar
  20. [20]
    Malekghasemi S., Mokhtarani B., Hamzehzadeh S., Hajfarajollah H., Sharifi A., Mirzaei M., Fluid Phase Equilibria, 2016, 415, 193CrossRefGoogle Scholar
  21. [21]
    Wang Y., Hu S. P., Yan Y. S., Guan W. S., Calphad, 2009, 33(4), 726CrossRefGoogle Scholar
  22. [22]
    Wang Y., Hu S. P., Yan Y. S., Guan W. S., Computer Coupling of Phase Diagrams and Thermochemistry, 2009, 33(4), 726CrossRefGoogle Scholar
  23. [23]
    Wang Y., Hu S. P., Han J., Yan Y. S., Journal of Chemical & Engineering Data, 2010, 55(11), 4574CrossRefGoogle Scholar
  24. [24]
    João K. G., Tomé L. C., Gouveia A. S. L., Marrucho, I. M., Journal of Chemical & Engineering Data, 2017, 62(4), 1182CrossRefGoogle Scholar
  25. [25]
    Zhao X., Wu H., Duan M., Hao X., Yang Q., Zhang Q., Huang X., Fluid Phase Equilibria, 2018, 459, 129CrossRefGoogle Scholar
  26. [26]
    Sun C., Cao W., Wu J., Hu X., Fluid Phase Equilibria, 2017, 432, 85CrossRefGoogle Scholar
  27. [27]
    Wazeer I., Hizaddin H. F., El Blidi L., Ali E., Hashim M. A., Hadj-Kali M. K., Journal of Chemical & Engineering Data, 2018, 63(3), 613CrossRefGoogle Scholar
  28. [28]
    Ferreira M. C., Bessa L. C. B. A., Meirelles A. J. A., Batista E. A. C., Fluid Phase Equilibria, 2018, 473, 286CrossRefGoogle Scholar
  29. [29]
    Kruber K. F., Krapoth M., Zeiner T., Fluid Phase Equilibria, 2017, 440, 54CrossRefGoogle Scholar
  30. [30]
    Saien J., Razi Asrami M., Journal of Chemical & Engineering Data, 2016, 62(11), 3663CrossRefGoogle Scholar
  31. [31]
    Cooke F. J., Oxford Handbook of Infectious Diseases and Microbiology, Oxford University Press, OUP Oxford, 2009, 56Google Scholar
  32. [32]
    Han J., Wang Y., Yu C.L., Li C. X., Yan Y. S., Liu Y., Analytica Chimica Acta, 2011, 685, 138CrossRefGoogle Scholar
  33. [33]
    Rogers R. D., Bond A. H., Bauer C. B., J. Chromatogr. B, 1996, 680(1/2), 221Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  1. 1.School of the Environment and Safety Engineering, School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiangP. R. China
  2. 2.Key Laboratory of Preparation and Application of Environmental Friendly MaterialsJilin Normal University, Ministry of EducationChangchunP. R. China

Personalised recommendations