Chemical Research in Chinese Universities

, Volume 35, Issue 2, pp 353–358 | Cite as

Preparation of Highly Loaded PAA/PAH Layer-by-layer Films by Combining Acid Transformation and Templating Methods

  • Qi Xia
  • Shaofeng Pan
  • Yi Zhang
  • Qi AnEmail author
  • Qian ZhangEmail author
  • Yihe Zhang


Enhancing the molecular loading capability of layer-by-layer(LbL) method holds high importance in environmental and biomedical application. Here, we reported a strategy to prepare highly loaded poly(acrylic acid)(PAA)/poly(allylamine hydrochloride)(PAH) LbL films by combining the particulate templating strategy and acid treatment film transformation and realized the efficient loading of hydrophilic small molecules. The loaded molecules can be released in a pH-controlled manner. A slow release speed was observed in the acidic solutions with pH value of 3. Abrupt releases were observed at higher pH values(5 or 7).


Layer-by-layer High load Calcium carbonate template pH-Controlled release 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2019_8203_MOESM1_ESM.pdf (918 kb)
Preparation of Highly Loaded PAA/PAH Layer-by-layer Films by Combining Acid Transformation and Templating Methods


  1. [1]
    Richardson J. J., Björnmalm M., Caruso F., Science, 2015, 348(6233), 411CrossRefGoogle Scholar
  2. [2]
    Borges J., Mano J. F., Chemical Reviews, 2014, 114(18), 8883CrossRefGoogle Scholar
  3. [3]
    Qureshi S. S., Zheng Z., Sarwar M. I., Felix O., Decher G., ACS Nano, 2013, 7(10), 9336CrossRefGoogle Scholar
  4. [4]
    Yoon M., Kim Y. H., Cho J. H., ACS Nano, 2011, 5(7), 5417CrossRefGoogle Scholar
  5. [5]
    Zhao Y., Xu Z. G., Wang X. G., Lin T., Langmuir, 2012, 28(15), 6328CrossRefGoogle Scholar
  6. [6]
    Nguyen C. A., Argun A. A., Hammond P. T., Lee P. S., Chemistry of Materials, 2011, 23(8), 2142CrossRefGoogle Scholar
  7. [7]
    Rydzek G., Ji Q. M., Li M., Schaaf P., Hill J. P., Boulmedais F., Ariga K., Nano Today, 2015, 10(2), 138CrossRefGoogle Scholar
  8. [8]
    Nie K., An Q., Zhang Y. H., Nanoscale, 2016, 8(16), 8791CrossRefGoogle Scholar
  9. [9]
    Huang T., An Q., Luan X. L., Zhang Q., Zhang Y. H., Nanoscale, 2015, 8(4), 2003CrossRefGoogle Scholar
  10. [10]
    Wang Y., An Q., Zhou Y., Niu Y., Akram R., Zhang Y. H., Shi F., Journal of Materials Chemistry B, 2014, 3(4), 562CrossRefGoogle Scholar
  11. [11]
    Wang X., Zhang L. B., Wang L., Sun J. Q., Shen J. C., Langmuir, 2010, 26(11), 8187CrossRefGoogle Scholar
  12. [12]
    An Q., Nie K., Zhang Y. H., Wang Y., Hu Y. M., Dutshk V., Luan X. L., Soft Matter, 2015, 11(34), 6859CrossRefGoogle Scholar
  13. [13]
    Pavlukhina S., Lu Y. M., Patimetha A., Libera M., Sukhishvili S., Biomacromolecules, 2010, 11(12), 3448CrossRefGoogle Scholar
  14. [14]
    Manabe K., Kyung K. H., Shiratori S., ACS Applied Materials & Interfaces, 2015, 7(8), 4763CrossRefGoogle Scholar
  15. [15]
    Pavlukhina S., Kaplan J. B., Xu L., Chang W., Yu X. J., Madhyastha S., Yakandawala N., Mentbayeva A., Khan B., Sukhishvili S., ACS Appl. Mater. Interfaces, 2012, 4(9), 4708CrossRefGoogle Scholar
  16. [16]
    Xu H. P., Gomez-Casado A., Liu Z. H., Reinhoudt D. N., Lammertink R. G. H., Huskens J., Langmuir, 2009, 25(24), 13972CrossRefGoogle Scholar
  17. [17]
    Wu C., Aslan S., Gand A., Wolenski J. S., Pauthe E., Tassel P. R. V., Advanced Functional Materials, 2013, 23(1), 66CrossRefGoogle Scholar
  18. [18]
    Mendelsohn J. D., Barrett C. J., Chan V. V., Pal A. J., Mayes A. M., Rubner M. F., Langmuir, 2000, 16(11), 5017CrossRefGoogle Scholar
  19. [19]
    Chen X. C., Ren K. F., Lei W. X., Zhang J. H., Martins M. C. L., Barbosa M. A., Xu J. P., ACS Applied Materials & Interfaces, 2016, 8(7), 4309CrossRefGoogle Scholar
  20. [20]
    Chen X. C., Ren K. F., Zhang J. H., Li D. D., Zhao E., Zhao Z. J., Xu Z. K., Xu J. P., Advanced Functional Materials, 2016, 25(48), 7470CrossRefGoogle Scholar
  21. [21]
    Liu X. K., Zhou L., Liu F., Ji M. Y., Tang W. G., Pang M. J., Sun J. Q., Journal of Materials Chemistry, 2010, 20(36), 7721CrossRefGoogle Scholar
  22. [22]
    Wang C. Y., He C. Y., Zhen T., Liu X. X., Ren B. Y., Zheng F., International Journal of Pharmaceutics, 2006, 308(1), 160CrossRefGoogle Scholar
  23. [23]
    Rodriguez-Navarro C., Burgos-Cara A., Elert K., Putnis C., Ruiz-Agudo E., Crystal Growth & Design, 2016, 16(4), 1850CrossRefGoogle Scholar
  24. [24]
    Hou X. J., Huang X. P., Ai Z. H., Zhao J. C., Zhang L. Z., Journal of Hazardous Materials, 2017, 327, 71CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  1. 1.Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and TechnologyChina University of GeosciencesBeijingP. R. China
  2. 2.School of Resources and Environmental EngineeringShandong University of TechnologyZiboP. R. China

Personalised recommendations