Construction of pH-Triggered DNA Hydrogels Based on Hybridization Chain Reactions

  • Yujie Li
  • Jie Chen
  • Yuanchen Dong
  • Huajie LiuEmail author
  • Dongsheng LiuEmail author
DNA Nanotechnology


As a novel type of bio-functional material, DNA hydrogels have attracted more and more attention due to their successful applications in 3D cell culturing and tissue engineering for the designable and programmable responsiveness. Herein, we have developed a pH-triggered DNA hydrogel based on a clamped hybridization chain reaction(C-HCR). In this system, a DNA switch was designed, which can release the initiator strand in a controllable way via the formation of the C-G·C+ triplex under the pH stimuli. While the pre-gelation solution is stable in neutral environment, the C-HCR will trigger the sol-gel transition as the pH decreased to 5.0. This strategy has endowed the DNA hydrogel with good controllability for triggering, which also shows potential in intellectual responsiveness to certain stimuli.


DNA hydrogel pH-Triggered Hybridization chain reaction Sol-gel phase transition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    He C. L., Kim S. W., Lee D. S., J. Control. Release, 2008, 127(3), 189CrossRefGoogle Scholar
  2. [2]
    Tsitsilianis C., Soft Matter, 2010, 6(11), 2372CrossRefGoogle Scholar
  3. [3]
    He X., Fan J. W., Wooley K. L., Chem.-Asian J., 2016, 11(4), 437CrossRefGoogle Scholar
  4. [4]
    Yu L., Ding J. D., Chem. Soc. Rev., 2008, 37(8), 1473CrossRefGoogle Scholar
  5. [5]
    Hunt J. A., Chen R., van Veen T., Bryan N., J. Mat. Chem. B, 2014, 2(33), 5319CrossRefGoogle Scholar
  6. [6]
    Shibata H., Heo Y. J., Okitsu T., Matsunaga Y., Kawanish T., Takeuchi S., Proc. Natl. Acad. Sci. USA, 2010, 107(42), 17894CrossRefGoogle Scholar
  7. [7]
    Um S. H., Lee J. B., Park N., Kwon S. Y., Umbach C. C., Luo D., Nat. Mater., 2006, 5, 797CrossRefGoogle Scholar
  8. [8]
    Xing Y. Z., Chen E. J., Yang Y., Chen P., Zhang T., Su Y. W., Yang Z. Q., Liu D. S., Adv. Mater., 2011, 23(9), 1117CrossRefGoogle Scholar
  9. [9]
    Guo W. W., Lu C. H., Qi X. J., Orbach R., Fadeev M., Yang H. H., Willner I., Angew. Chem. Int. Ed., 2014, 53(38), 10134CrossRefGoogle Scholar
  10. [10]
    Li J., Zheng C., Cansiz S., Wu C. C., Xu J. H., Cui C., Liu Y., Hou W. J., Wang Y. Y., Zhang L. Q., Teng I. T., Yang H. H., Tan W. H., J. Am. Chem. Soc., 2015, 137(4), 1412CrossRefGoogle Scholar
  11. [11]
    Lu S. S., Wang S., Zhao J. H., Sun J., Yang X. R., Chem. Commun., 2018, 54(36), 4621CrossRefGoogle Scholar
  12. [12]
    Lee J. B., Peng S., Yang D., Roh Y. H., Funabashi H., Park N., Rice E. J., Chen L., Long R. M., Wu M., Luo D., Nat. Nanotechnol., 2012, 7, 816CrossRefGoogle Scholar
  13. [13]
    Liu D. S., Balasubramanian S., Angew. Chem. Int. Ed., 2003, 42(46), 5734CrossRefGoogle Scholar
  14. [14]
    Zheng J., Li J. S., Jiang Y., Jin J. Y., Wang K. M., Yang R. H., Tan W., Anal. Chem., 2011, 83(17), 6586CrossRefGoogle Scholar
  15. [15]
    Asanuma H., Liang X., Yoshida T., Komiyama M., ChemBioChem, 2001, 2(1), 39CrossRefGoogle Scholar
  16. [16]
    Qiao Y. J., Qian Y., Liu M. F., Liu N. N., Tang X. X., Chem. Res. Chinese Universities, 2019, 35(5), 837CrossRefGoogle Scholar
  17. [17]
    Cheng E. J., Xing Y. Z., Chen P., Yang Y., Sun Y. W., Zhou D. J., Xu L. J., Fan Q. H., Liu D. S., Angew. Chem. Int. Ed., 2009, 48(41), 7660CrossRefGoogle Scholar
  18. [18]
    Liu H. Y., Cao T. Y., Xu Y., Dong Y. C., Liu D. S., Int. J. Mol. Sci., 2018, 19(6), 10Google Scholar
  19. [19]
    Wang J. B., Chao J., Liu H. J., Su S., Wang L. H., Huang W., Willner I., Fan C. H., Angew. Chem. Int. Ed., 2017, 56(8), 2171CrossRefGoogle Scholar
  20. [20]
    Song P., Ye D. K., Zuo X. L., Li J., Wang J. B., Liu H. J., Hwang M. T., Chao J., Su S., Wan L. H., Shi J. Y., Wang L. H., Huang W., La R., Fan C. H., Nano Lett., 2017, 17(9), 5193CrossRefGoogle Scholar
  21. [21]
    Lee H. Y., Jeong H., Jung I. Y., Jang B., Seo Y. C., Lee H., Lee H., Adv. Mater., 2015, 27(23), 3513CrossRefGoogle Scholar
  22. [22]
    Liu R. D., Huang Y. S., Ma Y. L., Jia S. S., Gao M. X., Li J. X., Zhang H. M., Xu D. M., Wu M., Chen Y., Zhu Z., Yang C. Y., ACS Appl. Mat. Interfaces, 2015, 7(12), 6982CrossRefGoogle Scholar
  23. [23]
    Wang F. A., Liu X. Q., Willner I., Angew. Chem. Int. Ed., 2015, 54(4), 1098CrossRefGoogle Scholar
  24. [24]
    Liu X. Q., Lu C. H., Willner I., Acc. Chem. Res., 2014, 47(6), 1673CrossRefGoogle Scholar
  25. [25]
    Idili A., Vallee-Belisle A., Ricci F., J. Am. Chem. Soc., 2014, 136(16), 5836CrossRefGoogle Scholar
  26. [26]
    Hu Y. W., Cecconello A., Idili A., Ricci F., Willner I., Angew. Chem. Int. Ed., 2017, 56(48), 15210CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  1. 1.Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of ChemistryTsinghua UniversityBeijingP. R. China
  2. 2.School of Chemical Science and Engineering, Shanghai Research Institute for Intelligent Autonomous Systems, Key Laboratory of Advanced Civil Engineering MaterialsMinistry of Education, Tongji UniversityShanghaiP. R. China
  3. 3.Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiP. R. China
  4. 4.CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of ChemistryChinese Academy of SciencesBeijingP. R. China

Personalised recommendations