Advertisement

Electrochemical Co-reduction of Bi(III) and Y(III) and Extracting Yttrium from Molten LiCl-KCl Using Liquid Bi as Cathode

  • Mei LiEmail author
  • Yichuan Liu
  • Zhongxuan Sun
  • Wei HanEmail author
  • Milin Zhang
  • Xiaoguang Yang
  • Yang Sun
Article
  • 4 Downloads

Abstract

The electrochemical reaction of Bi(III) and co-reduction behaviour of Bi(III) and Y(III) ions were researched in molten LiCl-KCl on a tungsten(W) electrode employing a range of electrochemical techniques. Cyclic voltammetric and square-wave voltammetric results revealed that the reduction of Bi(III) was a one-step process, with the exchange of three electrons on a W electrode, and diffusion-controlled. The electrochemical curves showed two reduction peaks pertaining to the formation of Bi-Y alloy compounds, because of the co-reduction of Bi(III) and Y(III) by metallic Y deposited on the pre-deposited Bi-coated W electrode and reacting with Bi metal in molten LiCl-KCl. Furthermore, galvanostatic electrolysis was conducted using liquid Bi as cathode to extract yttrium at different current intensities, and the extractive products were analyzed by SEM, EDS and XRD. The results indicated that BiY intermetallic compound was formed in the molten LiCl-KCl-YCl3 system.

Keywords

Electrochemical co-reduction Electrochemical behaviour Bi-Y intermetallic compound Galvanostatic electrolysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Magill J., Berthou V., Haas D., Galy J., Schenkel R., Wiese H. W, Heusener G., Tommasi J., Youinou G., Nucl. Energ., 2003, 42(5), 263Google Scholar
  2. [2]
    Navada H. P., Fukufa K., J. Phys. Chem. Solids, 2005, 66, 647CrossRefGoogle Scholar
  3. [3]
    Williamson M. A., Willit J. L., Nucl. Eng. Technol., 2011, 43, 329CrossRefGoogle Scholar
  4. [4]
    Wang L., Liu Y. L., Liu K., Tang S. L., Yuan L. Y., Lu T., Chai Z. F., Shi W. Q., J. Electrochem. Soc. 2015, 162, e179CrossRefGoogle Scholar
  5. [5]
    Liu Y. L., Yuan L. Y., Liu K., Ye G. A., Zhang M. L., He H., Tang H. B., Lin R. S., Chai Z. F., Shi W. Q., Electrochim. Acta, 2014, 120, 369CrossRefGoogle Scholar
  6. [6]
    Han W., Li Z. Y., Li M., Hu X., Yang X. G., Zhang M. L., Sun Y., J. Electrochem. Soc., 2017, 164(13), D934CrossRefGoogle Scholar
  7. [7]
    Yoo J. H., Lee H. S., Kim E. H., Nucl. Eng. Technol., 2007, 39, 663CrossRefGoogle Scholar
  8. [8]
    Liu Y. L., Zhou W., Tang H. B., Liu Z., Liu R. K., Yuan L. Y., Feng Y. X., Chai Z. F., Shi W. Q., Electrochim. Acta, 2016, 211, 313CrossRefGoogle Scholar
  9. [9]
    Zhang M., Han W., Zhang M. L., Li Y. N., Zhu F. Y., Xue Y., Chem. Res. Chinese Universities, 2014, 30(3), 489CrossRefGoogle Scholar
  10. [10]
    Sakamura Y., Shirai O., Iwai T., Suzuki Y., J. Alloy. Compd., 2001, 321, 76CrossRefGoogle Scholar
  11. [11]
    Han W., Ji N., Li M., Wang S. S., Yang X. G., Zhang M. L., Yan Y. D., Acta Phys.-Chim. Sin., 2016, 32(10), 2538Google Scholar
  12. [12]
    Wang Y. C., Li M., Han W., Zhang M. L., Jiang T., Peng S. M., Yan Y. D., J. Alloy. Compd., 2017, 695, 3484CrossRefGoogle Scholar
  13. [13]
    Castrillejo Y., Bermejo M. R., Acocas P. D., Rosa F. D. L., Barrado E., Electrochemistry, 2005, 73(8), 636Google Scholar
  14. [14]
    Castrillejo Y., Bermejo M. R., Arocas P. D., Martínez A. M., Barrado E., J. Electroanal. Chem., 2005, 579(2), 343CrossRefGoogle Scholar
  15. [15]
    Jiang T., Peng S. M., Li M., Pei T. T., Han W., Sun Y., Zhang M. L., Acta Phys.-Chim. Sin., 2016, 32(7), 1708Google Scholar
  16. [16]
    Li M., Gu Q. Q., Han W., Zhang X. M., Sun Y., Zhang M. L., Yan Y. D., RSC Adv., 2015, 5(100), 82471CrossRefGoogle Scholar
  17. [17]
    Han W., Ji N., Wang J., Li M., Yang X. G., Sun Y., Zhang M. L., RSC Adv., 2017, 7(50), 31682CrossRefGoogle Scholar
  18. [18]
    Han W., Li Z. Y., Li M., Li W. L., Zhang X. M., Yang X. G., Zhang M. L., Sun Y., J. Electrochem. Soc., 2017, 164(4), e62CrossRefGoogle Scholar
  19. [19]
    Wang S. S., Wei B. C., Li M., Han W., Zhang M. L., Yang X. G., Sun Y., J. Rare Earth, 2018, 36,1007Google Scholar
  20. [20]
    Ramaley L., Krause M. S., Anal. Chem., 1969, 41(11), 1361CrossRefGoogle Scholar
  21. [21]
    O’Dea J. J., Osteryoung J., Osteryoung R. A., J. Chem. Phys., 1983, 87, 3911CrossRefGoogle Scholar
  22. [22]
    O’Dea J. J., Wikiel K., Osteryoung J., J. Chem. Phys., 1990, 94, 3628CrossRefGoogle Scholar
  23. [23]
    Kounaves S. P., O’Dea J. J., Chandresekhar P., Osteryoung J., Anal. Chem., 1986, 58, 3199CrossRefGoogle Scholar
  24. [24]
    Turner J. A., Christle J. H., Vukovic M., Osteryoung R. A., Anal. Chem., 1977, 49(13), 1899CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical EngineeringHarbin Engineering UniversityHarbinP. R. China

Personalised recommendations