Advertisement

A Highly Efficient and Recyclable Solid Acid Catalyst for Synthesis of Spiro-oxindole Dihydroquinazolinones Under Ultrasound Irradiation

  • Xiufang Yang
  • Xiaogang Wang
  • Tingting Wang
  • Weitao Wang
  • Jin Zhang
  • Yangmin Ma
Article

Abstract

A simple, efficient and green procedure for the synthesis of spiro-oxindole dihyfroquinazolinones was developed by multi-component condensation of isatoic anhydride, aniline and isatin in the presence of a novel solid acid catalyst under ultrasound irradiation. The present environmentally benign protocol offers several advantages, such as shorter reaction time, a wide range of functional group tolerance, the use of an inexpensive heterogeneous catalyst, and a high yield of products via a simple experimental and work-up procedure. The mesoporous solid acid catalyst was directly prepared from phytic acid by microwave-sulfonation method without template. The phytic acid based solid acid was fully characterized by means of Fourier transform infrared spectroscopy(FTIR), Raman spec-troscopy, X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), and transmission electron microsco-py(TEM). The catalyst can be recovered and reused for at least five runs without significant impact on the product yields.

Keywords

Microwave-sulfonation method Solid acid catalyst Spiro-oxindole dihyfroquinazolinone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Chawla A., Batra C., J. Int. Med. Res., 2013, 4, 49Google Scholar
  2. [2]
    Zhang J., Liu J., Ma Y. M., Ren D. C., Cheng P., Zhao J. W., Zhang F., Yao Y., Bioorg. Med. Chem. Lett., 2016, 26, 2273CrossRefGoogle Scholar
  3. [3]
    Bouley R., Ding D., Peng M., Bastian M., Lastochkin E., Song W., Suckow M. A., Schroeder V. A., Wolter W. R., Mobashery S., Chang M., J. Med. Chem., 2016, 59, 5011CrossRefGoogle Scholar
  4. [4]
    Mahdavi M., Pedrood K., Safavi M., Saeedi M., Pordeli M., Arde-stani S. K., Emami S., Adib M., Foroumadi A., Shafiee A., Eur. J. Med. Chem., 2015, 95, 492CrossRefGoogle Scholar
  5. [5]
    Abdel-Aziz A. A., Abou-Zeid L. A., Bioorgan. Med. Chem., 2016, 24, 3818CrossRefGoogle Scholar
  6. [6]
    Al-Amiery A. A., Kadhum A. A. H., Shamel M., Satar M., Khalid Y., Mohamad A. B., Med. Chem. Res., 2013, 23, 236CrossRefGoogle Scholar
  7. [7]
    Arun Y., Bhaskar G., Bioorg. Med. Chem., 2013, 23, 1839CrossRefGoogle Scholar
  8. [8]
    Abbas S., El-Bayouki K. A. M., Basyouni W. M., Synth. Commun., 2016, 46, 993CrossRefGoogle Scholar
  9. [9]
    Chauhan C., Sharma R., Pandey A., Syn. Lett., 2012, 23, 2209Google Scholar
  10. [10]
    Taghipour A. G. C., Lett. Org. Chem., 2011, 8, 470CrossRefGoogle Scholar
  11. [11]
    Shaterian H. R., Rigi F., Res. Chem. Intermed., 2013, 40, 2983CrossRefGoogle Scholar
  12. [12]
    Majid G., Kobra A., Hamed M. P., Hamid Reza S., Chinese J. Chem., 2011, 29, 1617Google Scholar
  13. [13]
    Zhang J., Cheng P., Ma Y. M., Liu J., Miao Z., Ren D. C., Fan C., Liang M., Liu L., Tetrahedron Lett., 2016, 57, 5271CrossRefGoogle Scholar
  14. [14]
    Karimi-Jaberi Z., Arjmandi Z., Monatsh. Chem., 2011, 142, 631CrossRefGoogle Scholar
  15. [15]
    Shaterian H. R., Fahimi N., Azizi K., Res. Chem. Intermed., 2013, 40, 1879CrossRefGoogle Scholar
  16. [16]
    Liu Y., Lu L., Zhou Y. J., Wang X. S., Res. Chem. Intermed., 2013, 40, 2823CrossRefGoogle Scholar
  17. [17]
    Mohammadi A. A., Dabiri M., Qaraat H., Tetrahedron, 2009, 65, 3804CrossRefGoogle Scholar
  18. [18]
    Engen K., Sävmarker J., Rosenstrom U., Wannbery J., Lundback T., Jenmalm-Jensen A., Larhed M., Org. Process Res. Dev., 2014, 18, 1582CrossRefGoogle Scholar
  19. [19]
    Zhang J., Zhao J. W., Wang L. P., Liu J., Ren D. C., Ma Y. M., Tetra-hedron, 2016, 72, 936CrossRefGoogle Scholar
  20. [20]
    Gonçalves M., Mantovani M., Carvalho W. A., Rodrigues R., Man-delli D., Silvestre Albero J., Chem. Eng. J., 2014, 256, 468CrossRefGoogle Scholar
  21. [21]
    Zhang F., Fang Z., Wang Y. T., Appl. Energ., 2015, 155, 637CrossRefGoogle Scholar
  22. [22]
    Wen G., Wu S., Angew. Chem. Int. Ed., 2015, 54, 4105CrossRefGoogle Scholar
  23. [23]
    Yang X., Lee J., Chae S. R., Peterson V. K., Minett A. I., Yin Y., Har-ris A. T., Carbon, 2013, 59, 160CrossRefGoogle Scholar
  24. [24]
    Patel M. A., Luo F., Rabie M. R., Zhang Q., Flach C. R., Mendelsohn R., Garfunkel E., Szostak M., He H., ACS Nano, 2016, 10, 2305CrossRefGoogle Scholar
  25. [25]
    Devi B. L., Gangadhar K. N., Prasad P. S., Jagannadh B., Prasad P. B., Chem. Sus. Chem., 2009, 2, 617CrossRefGoogle Scholar
  26. [26]
    Wang W., Lu P., Tang H., Ma Y. M., Yang X. F., New J. Chem., 2017, 41, 9256CrossRefGoogle Scholar
  27. [27]
    Chen B. H., Li J. T., Chen C. F., Ultrason. Chem., 2015, 23, 59Google Scholar
  28. [28]
    Sardarian N. F., Curr. Organocatal., 2016, 3, 39Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry & Chemical EngineeringShaanxi University of Science and TechnologyXi’anP. R. China
  2. 2.Shaanxi Key Laboratory of Chemical Additives for IndustryShaanxi University of Science and TechnologyXi’anP. R. China
  3. 3.Shaanxi Research Institute of Agricultural Products Processing TechnologyShaanxi University of Science and TechnologyXi’anP. R. China

Personalised recommendations