Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 5, pp 758–766 | Cite as

QM/MM Investigations on the Bioluminescent Decomposition of Coelenterazine Dioxetanone in Obelin

  • Ling Yue
Article
  • 24 Downloads

Abstract

The bioluminescent mechanism of colenterazine dioxetanone(CZD) in the photoprotein of Obelia(obelin) was investigated by the combined quantum and molecular mechanics(QM/MM) method at TD-DFT level, which involved the real protein environment in decomposition of 1,2-dioxetanones. The anionic decomposition of CZD in (CZD+H2O) model can go through a charge transfer(CT) catalyzed asynchronous-concerted process, which can be elucidated by the gradual reversible CT initiated luminescence(GRCTIL) mechanism. The neutral CZD in (CZDH+H2O) decomposes through an uncatalyzed non-CT biradical process. The anionic decomposition catalyzed by CT, in which the S0/S1 surface “double crossing” hence has ability to provide high quantum yield of singlet chemiexcitation is thus more possible in bioluminescence of photoprotein.

Keywords

1,2-Dioxetanone Bioluminescence Coelenterazine Photoprotein Quantum and molecular mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2018_8237_MOESM1_ESM.pdf (2 mb)
The QM/MM Investigations on the Bioluminescent Decomposition of Coelenterazine Dioxetanone in Obelin

References

  1. [1]
    Morin J. G., Coelenterate Bioluminescence, Coelenterate Biology, Academic Press, New York, 1974, 397CrossRefGoogle Scholar
  2. [2]
    Shimomura O., Johnson F. H., Saiga Y., J. Cellular Comparative Physi., 1962, 59(3), 223CrossRefGoogle Scholar
  3. [3]
    Shimomura O., The Coelenterazines, Bioluminescence: Chemical Principles and Methods, World Scientific, Singapore, 2006 CrossRefGoogle Scholar
  4. [4]
    Campbell A. K., Biochem. J., 1974, 143(2), 411CrossRefPubMedPubMedCentralGoogle Scholar
  5. [5]
    Widder E. A., Science, 2010, 328(5979), 704CrossRefPubMedGoogle Scholar
  6. [6]
    Lourenço J. M., Esteves da Silva J. C. G., Pinto da Silva L., J. Lumin., 2018, 194, 139CrossRefGoogle Scholar
  7. [7]
    Shimomura O., Johnson F. H., Proc. Natl. Acad. Sci., 1978, 75(6), 2611CrossRefPubMedGoogle Scholar
  8. [8]
    Markova S. V., Vysotski E. S., Blinks J. R., Burakova L. P., Wang B. C., Lee J., Biochemistry, 2002, 41(7), 2227CrossRefPubMedGoogle Scholar
  9. [9]
    Hermann A., Cox J. A., Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 1995, 111(3), 337CrossRefGoogle Scholar
  10. [10]
    Charbonneau H., Walsh K. A., McCann R. O., Prendergast F. G., Cormier M. J., Vanaman T. C., Biochemistry, 1985, 24(24), 6762CrossRefPubMedGoogle Scholar
  11. [11]
    Fagan T. F., Ohmiya Y., Blinks J. R., Inouye S., Tsuji F. I., FEBS Lett., 1993, 333(3), 301CrossRefPubMedGoogle Scholar
  12. [12]
    Lewit-Bentley A., Réty S., Current Opinion in Structural Biology, 2000, 10(6), 637CrossRefPubMedGoogle Scholar
  13. [13]
    Rizzuto R., Simpson A. W. M., Brini M., Pozzan T., Nature, 1992, 358(6384), 325CrossRefPubMedGoogle Scholar
  14. [14]
    Usami K., Isobe M., Tetrahedron Lett., 1995, 36(47), 8613CrossRefGoogle Scholar
  15. [15]
    van Oort B., Eremeeva E. V., Koehorst R. B. M., Laptenok S. P., van Amerongen H., van Berkel W. J. H., Malikova N. P., Markova S. V., Vysotski E. S., Visser A. J. W. G., Lee J., Biochemistry, 2009, 48(44), 10486CrossRefPubMedGoogle Scholar
  16. [16]
    Naumov P., Wu C., Liu Y. J., Ohmiya Y., Photoch. Photobio. Sci., 2012, 11(7), 1151CrossRefGoogle Scholar
  17. [17]
    Matsumoto M., J. Photochem. Photobiol. C: Photochem. Rev., 2004, 5(1), 27CrossRefGoogle Scholar
  18. [18]
    Zhang Y., Chen L., Ju W., Xu Y., Chem. Res. Chinese Universities, 2014, 30(2), 194CrossRefGoogle Scholar
  19. [19]
    Yue L., Roca-Sanjuán D., Lindh R., Ferré N., Liu Y. J., J. Chem. Theory Comput., 2012, 8(11), 4359CrossRefPubMedGoogle Scholar
  20. [20]
    Yue L., Liu Y. J., J. Chem. Theory Comput., 2013, 9(5), 2300CrossRefPubMedGoogle Scholar
  21. [21]
    Yue L., Liu Y. J., Fang W. H., J. Am. Chem. Soc., 2012, 134(28), 11632CrossRefPubMedGoogle Scholar
  22. [22]
    Yue L., Lan Z., Liu Y. J., J. Phys. Chem. Lett., 2015, 6(3), 540CrossRefPubMedGoogle Scholar
  23. [23]
    Ding B. W., Liu Y. J., J. Am. Chem. Soc., 2017, 139(3), 1106CrossRefPubMedGoogle Scholar
  24. [24]
    Min C. G., Leng Y., Yang X. K., Ren A. M., Cui X. Y., Xu M. L., Wang S. H., Chem. Res. Chinses Universities, 2013, 29(5), 982CrossRefGoogle Scholar
  25. [25]
    Min C., Leng Y., Yang X. K., Huang S., Ren A., Chem. J. Chinese Universities, 2014, 35(3), 564Google Scholar
  26. [26]
    Li Z. S., Zou L. Y., Ren A. M., Feng J. K., Chem. J. Chinese Universities, 2012, 33(12), 2757Google Scholar
  27. [27]
    Wang X., Han B., Gao Y., Wang L., Bai M., Chem. Res. Chinese Universities, 2016, 32(3), 325CrossRefGoogle Scholar
  28. [28]
    Vacher M., Fdez Galván I., Ding B. W., Schramm S., Berraud-Pache R., Naumov P., Ferré N., Liu Y. J., Navizet I., Roca-Sanjuán D., Baader W. J., Lindh R., Chem. Rev., 2018, 118(15), 6927CrossRefPubMedGoogle Scholar
  29. [29]
    McCapra F., Chang Y. C., Chem. Commun., 1967, (19), 1011Google Scholar
  30. [30]
    Usami K., Isobe M., Tetrahedron, 1996, 52(37), 12061CrossRefGoogle Scholar
  31. [31]
    Min C. G., Ferreira P. J. O., Pinto da Silva L., J. Photochem. Photobiol. B: Biol., 2017, 174(2017), 18CrossRefGoogle Scholar
  32. [32]
    Min C. G., Pinto da Silva L., Esteves da Silva J. C. G., Yang X. K., Huang S. J., Ren A. M., Zhu Y. Q., Chem. Phys. Chem., 2017, 18(1), 117CrossRefPubMedGoogle Scholar
  33. [33]
    Liu Z. J., Vysotski E. S., Deng L., Lee J., Rose J., Wang B. C., Biochem. Biophys. Res. Commun., 2003, 311(2), 433CrossRefPubMedGoogle Scholar
  34. [34]
    Liu Z. J., Stepanyuk G. A., Vysotski E. S., Lee J., Markova S. V., Malikova N. P., Wang B. C., Proc. Natl. Acad. Sci., 2006, 103(8), 2570CrossRefPubMedGoogle Scholar
  35. [35]
    Case D. A., Darden T. A., Cheatham T. E. III, Simmerling C. L., Wang J., Duke R. E., R. Luo R. C. W., Zhang W., Merz K. M., Roberts B., Hayik S., Roitberg A., Seabra G., Swails J., Goetz A. W., Kolossváry I., Wong K. F., Paesani F., Vanicek J., Wolf R. M., Liu J., Wu X., Brozell S. R., Steinbrecher T., Gohlke H., Cai Q., Ye X., Wang J., Hsieh M. J., Cui G., Roe D. R., Mathews D. H., Seetin M. G., Salomon-Ferrer R. C., Sagui V. B., Luchko T., Gusarov S., Kovalenko A., Kollman P. A., AMBER 12, University of California, 2012 Google Scholar
  36. [36]
    Šali A., Blundell T. L., J. Mol. Biol., 1993, 234(3), 779CrossRefPubMedPubMedCentralGoogle Scholar
  37. [37]
    Vreven T., Morokuma K., Farkas Ö., Schlegel H. B., Frisch M. J., J. Comput. Chem., 2003, 24(6), 760CrossRefPubMedGoogle Scholar
  38. [38]
    Melaccio F., Olivucci M., Lindh R., Ferré N., Int. J. Quantum Chem., 2011, 111(13), 3339CrossRefGoogle Scholar
  39. [39]
    Gonzalez C., Schlegel H. B., J. Phys. Chem., 1990, 94(14), 5523CrossRefGoogle Scholar
  40. [40]
    Yanai T., Tew D. P., Handy N. C., Chem. Phys. Lett., 2004, 393(1—3), 51CrossRefGoogle Scholar
  41. [41]
    Peach M. J. G., Helgaker T., Salek P., Keal T. W., Lutnæs O. B., Tozer D. J., Handy N. C., Phys. Chem. Chem. Phys., 2006, 8(5), 558CrossRefPubMedGoogle Scholar
  42. [42]
    Hariharan P. C., Pople J. A., Theoret. Chim. Acta, 1973, 28(3), 213CrossRefGoogle Scholar
  43. [43]
    Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., X. Li H. P. H., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, Revision A. 02, Gaussian Inc., Wallingford CT, 2009 Google Scholar
  44. [44]
    Senn H. M., Thiel W., Angew. Chem. Int. Ed., 2009, 48(7), 1198CrossRefGoogle Scholar
  45. [45]
    Rokob T. A., Rulíšek L., J. Comput. Chem., 2012, 33(12), 1197PubMedGoogle Scholar
  46. [46]
    Singh U. C., Kollman P. A., J. Comput. Chem., 1984, 5(2), 129CrossRefGoogle Scholar
  47. [47]
    Nakamura H., Truhlar D. G., J. Chem. Phys., 2003, 118(15), 6816CrossRefGoogle Scholar
  48. [48]
    Adam W., Baader W. J., J. Am. Chem. Soc., 1985, 107(2), 410CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Ministry of Education, School of SciencesXi’an Jiaotong UniversityXi’anP. R. China

Personalised recommendations