Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 6, pp 1028–1034 | Cite as

Bentonite Reinforced Tough Composite Hydrogels as Potential Artificial Articular Cartilage

  • Xueting Lu
  • Wei Feng
  • Honglei Wang
  • Qianqian Hu
  • Shuang GuanEmail author
  • Peipei GuoEmail author
Article
  • 8 Downloads

Abstract

Novel tough composite hydrogels were prepared from inorganic bentonite(IB), polyvinyl alcohol(PVA) and polyethylene glycol(PEG) by means of a freeze-thaw technique, during which IB acted as multifunctional physically crosslinking junction and a filler to bridge the 3D network hydrogel; while the physical adsorption between IB and the polymer chains served as sacrificial bonds and increased the energy dissipation efficiency. The effects of different content of IB(wIB) on the morphological, thermal, swelling, and mechanical properties of the hydrogels were investigated. It was found that the added IB promoted the material crosslinking and stability, and the mechanical properties of the hydrogels were significantly improved with increasing wIB. The highest tensile stress of the hydrogel was achieved(1.1 MPa) when wIB was 5%. The synthesized hydrogels with high mechanical strength and low friction coefficient are potential candidate materials for artificial cartilage.

Keywords

Bentonite Polyvinyl alcohol Polyethylene glycol Freeze-thaw Hydrogel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Sônia M. M., Antonio C. A., Artif. Organs., 2000, 3, 174Google Scholar
  2. [2]
    Michelle M. B., Timothy C. O., Wear, 2012, 2, 201Google Scholar
  3. [3]
    Jeon O., Shin J. Y., Marks R., Hopkins M., Kim T. H., Park H. H., Alsberg E., Chem. Mater., 2017, 29, 8425CrossRefGoogle Scholar
  4. [4]
    Peppas N. A., Hilt J. Z., Khademhosseini A., Langer R., Adv. Mater., 2006, 11, 1345CrossRefGoogle Scholar
  5. [5]
    Hu C., Wang M. X., Sun L., Yang J. H., Zrínyi M., Chen Y. M., Macromol. Rapid Comm., 2017, 38, 1600788CrossRefGoogle Scholar
  6. [6]
    Blum M. M., Ovaert T. C., Mat. Sci. Eng. C, 2013, 33, 4377CrossRefGoogle Scholar
  7. [7]
    Baykal D., Underwood R. J., Mansmann K., Marcolongo M., Kurtz S. M., J. Mech. Behav. Biomed., 2013, 28, 263CrossRefGoogle Scholar
  8. [8]
    Nigmatullin R., Bencsik M., Gao F. G., Soft Matter, 2014, 10, 2035CrossRefGoogle Scholar
  9. [9]
    Wang J. F., Lin L., Cheng Q. F., Jiang L., Angew. Chem. Int. Ed., 2012, 51, 4754CrossRefGoogle Scholar
  10. [10]
    Li Z. Y., Su Y. L., Xie B. Q., Wang H. L., Wen T., He C. C., Shen H., Wu D. C., Wang D. J., J. Mater. Chem. B, 2013, 1, 1755CrossRefGoogle Scholar
  11. [11]
    Gong J. P., Katsuyama Y., Kurokawa T., Osada Y., Adv. Mater., 2003, 15, 1155CrossRefGoogle Scholar
  12. [12]
    Chen Q., Zhu L., Zhao C., Wang Q. M., Zheng J., Adv. Mater., 2013, 25, 4171CrossRefGoogle Scholar
  13. [13]
    Yang Y. Y., Wang X., Yang F., Wang L. N., Wu D. C., Adv. Mater., 2018, 30, 1707071CrossRefGoogle Scholar
  14. [14]
    Chen Q., Zhu L., Chen H., Yan H. L., Huang L. N., Yang J., Zheng J., Adv. Funct. Mater., 2015, 25, 1598CrossRefGoogle Scholar
  15. [15]
    Chen Q., Wei D. D., Chen H., Zhu L., Jiao C. C., Liu G., Huang L. N., Yang J., Wang L. B., Zheng J., Macromolecules, 2015, 48, 8003CrossRefGoogle Scholar
  16. [16]
    Yang J. W., Bai R. B., Suo Z. G., Adv. Mater., 2018, 30, 1800671CrossRefGoogle Scholar
  17. [17]
    Okumura Y., Ito K., Polym. Prepr., 2003, 4, 614Google Scholar
  18. [18]
    Takamasa S., Takuro M., Yamamoto Y.J., Ito C., Yoshida R., Macromolecules, 2008, 41, 5379CrossRefGoogle Scholar
  19. [19]
    Gaharwar A. K., Dammu S. A., Canter J. M., Wu C. J., Schmidt G., Biomacromolecules, 2011, 12, 1641CrossRefGoogle Scholar
  20. [20]
    Xu X. B., Lü S. Y., Gao C. M., Wang X. G., Bai X., Gao N. N., Liu M. Z., Chem. Eng. J., 2014, 240, 331CrossRefGoogle Scholar
  21. [21]
    Gao G. R., Du G. L., Cheng Y. J., Fu J., J. Mater. Chem. B, 2014, 2, 1539CrossRefGoogle Scholar
  22. [22]
    Yu L. N., Wang D., Tan Y., Du J., Xiao Z. X., Wu R. L., Xu S. M., Huang J. B., Appl. Clay Sci., 2018, 156, 53CrossRefGoogle Scholar
  23. [23]
    Sarkar D. J., Singh A., Carbohyd. Polym., 2017, 156, 303CrossRefGoogle Scholar
  24. [24]
    Tien Y. M., Wu P. L., Huang W. H., Kuo M. F., Chu C. A., Powder Technol., 2007, 173, 140CrossRefGoogle Scholar
  25. [25]
    Liebmann P., Loew G., Burt S., Lawless J., MAcElroy R. D., Inorg. Chem., 1982, 21, 1586CrossRefGoogle Scholar
  26. [26]
    Oh S. T., Kim W. R., Kim S. H., Chung Y. C., Park J. S., Fibers Polym., 2011, 12, 159CrossRefGoogle Scholar
  27. [27]
    Kheirabadi M., Bagheri R., Kabiri K., Polym. Bull., 2015, 72, 1663CrossRefGoogle Scholar
  28. [28]
    Oka M., Noguchi T., Kumar P., Keuchi K., Yamamuro T., Hyon S. H., Ikada Y., Clin. Mater., 1990, 361Google Scholar
  29. [29]
    Chen K., Zhang D. K., Cui X. T., Wang Q. L., RSC Adv., 2015, 5, 24215CrossRefGoogle Scholar
  30. [30]
    Gonzalezn J. S., Alvarez V. A., J. Mech. Behav. Biomed., 2014, 34, 47CrossRefGoogle Scholar
  31. [31]
    Zhang X. Y., Guo X. L., Yang S. G., Tan S. X., Li X. F., Dai H. J., Yu X. L., Zhang X. L., Weng N., Jian B., Xu J., J. Appl. Polym. Sci., 2009, 112, 3063CrossRefGoogle Scholar
  32. [32]
    Wang L. Y., Shan G. R., Pan P. J., RSC Adv., 2014, 4, 63513CrossRefGoogle Scholar
  33. [33]
    Gupta A., Upadhyay N. K., Parthasarathy S., Rajagopal C., Roy P. K., J. Appl. Polym. Sci., 2013, 128, 4031CrossRefGoogle Scholar
  34. [34]
    Milner P. E., Parkes M., Puetzer J. L., Chapman R., Stevens M. M., Cann P., Jeffers J., Acta Biomater., 2018, 65, 102CrossRefGoogle Scholar
  35. [35]
    Gao G. R., Du G. L., Sun Y. N., Fu J. ACS Appl. Mater. Inter., 2015, 7, 5029CrossRefGoogle Scholar
  36. [36]
    Haraguchi K., Xu Y. J., Li G., Macromol. Rapid Commun., 2010, 31, 718CrossRefGoogle Scholar
  37. [37]
    Tien Y. M., Wu P. L., Huang W. H., Kuo M. F., Chu C. A., Powder Technol., 2007, 173, 140CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Life Science, Advanced Institute of Materials ScienceChangchun University of TechnologyChangchunP. R. China
  2. 2.China-Japan Union Hospital of Jilin UniversityChangchunP. R. China

Personalised recommendations