Effective Removal of Tetracycline by Using Biochar Supported Fe3O4 as a UV-Fenton Catalyst

  • Xiaodan Yu
  • Xinchen Lin
  • Weiguang Li
  • Wei Feng


Novel Fe3O4-decorate hierarchical porous carbon skeleton derived from maize straw(Fe3O4@MSC) was synthesized by a facile co-precipitation process and a calcination process, which was developed as a UV assisted heterogeneous Fenton-like catalyst. The as-synthesized catalysts were characterized via X-ray powder diffraction(XRD), scanning electron microscope(SEM), transmission electron microscope(TEM), Brunauer-Emmet-Teller(BET) and vibrating sample magnetometer(VSM) at room temperature. The morphology and structure analysis revealed that the as-prepared Fe3O4@MSC retained the original pore morphology of the maize straw material. The non-uniform polyhedral Fe3O4 grew on the whole surface of the MSC, which reduced the aggragation of Fe3O4 and provided more active sites to strengthen the UV-assisted Fenton-like reaction. As a result, the tetracycline(TC) degradation efficiency after 40 min reaction and total organic carbon(TOC) removal efficiency after 2 h reaction of Fe3O4@MSC catalyzing UV-Fenton system reached 99.2% and 72.1%, respectively, which were more substantial than those of Fe3O4@MSC/H2O2(31.5% and 2%), UV/H2O2 system(68% and 23.4%) and UV/Fe3O4/H2O2(80% and 37.5%). The electron spin resonance(ESR) results showed that the OH played an important role in the catalytic reaction. A possible degradation pathway of TC was proposed on the basis of the identified intermediates. Overall, the UV assisted heterogeneous Fenton-like process in Fe3O4@MSC improved the cycle of Fe3+/Fe2+ and activated the interfacial catalytic site, which eventually realized the enhancement of degradation and mineralization to tetracycline.


Fe3O4 Carbon skeleton of maize straw Heterogeneous Fenton-like catalyst UV irradiation Degradation of tetracycline 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2018_8213_MOESM1_ESM.pdf (199 kb)
Effective Removal of Tetracycline by Using Biochar Supported Fe3O4 as a UV-Fenton catalyst


  1. [1]
    Zheng K., Di M., Zhang J., Bao W., Liang D., Pang G., Fang Z., Li C., Chem. Res. Chinese Universities, 2017, 33(4), 648CrossRefGoogle Scholar
  2. [2]
    Qiu B., Li Q., Shen B., Xing M., Zhang J., Appl. Catal. B: Environ., 2016, 183, 216CrossRefGoogle Scholar
  3. [3]
    Xu D., Zhang Y., Cheng F., Dai P., J. Taiwan Inst. Cheml. E, 2016, 60, 376CrossRefGoogle Scholar
  4. [4]
    Zhou L., Shao Y., Liu J., Ye Z., Zhang H., Ma J., Jia Y., Gao W., Li Y., ACS Appl. Mater. Inter., 2014, 6(10), 7275CrossRefGoogle Scholar
  5. [5]
    Cleveland V., Bingham J. P., Kan E., Sep. Purif. Technol., 2014, 133, 388CrossRefGoogle Scholar
  6. [6]
    Yang M., Ma J., Sun Y., Xiong X., Li C., Li Q., Chen J., Chem. J. Chinese Universities, 2014, 35(3), 570Google Scholar
  7. [7]
    Li Q. M., Chem. Res. Chinese Universities, 2013, 29(5), 1011CrossRefGoogle Scholar
  8. [8]
    Liang R., Shen L., Jing F., Qin N., Wu L., ACS Appl. Mater. Inter., 2015, 7(18), 9507CrossRefGoogle Scholar
  9. [9]
    Wang P., Wang L., Sun Q., Qiu S., Liu Y., Zhang X., Liu X., Zheng L., Mater. Lett., 2016, 183, 61CrossRefGoogle Scholar
  10. [10]
    Zhang Y., Gao Z., Song N., Li X., Electrochim. Acta, 2016, 222, 1257CrossRefGoogle Scholar
  11. [11]
    Li Y., Wang G., Wei T., Fan Z., Yan P., Nano Energy, 2016, 19, 165CrossRefGoogle Scholar
  12. [12]
    Hu X., Xiong W., Wang W., Qin S., Cheng H., Zeng Y., Wang B., Zhu Z., ACS Sustain. Chem. Eng., 2016, 4(3), 1201CrossRefGoogle Scholar
  13. [13]
    Xiong W., Gao Y., Wu X., Hu X., Lan D., Chen Y., Pu X., Zeng Y., Su J., Zhu Z., ACS Appl. Mater. Inter., 2014, 6(21), 19416CrossRefGoogle Scholar
  14. [14]
    Yang J., Zhao Y., Ma S., Zhu B., Zhang J., Zheng C., Environ. Sci. Technol., 2016, 50(21), 12040CrossRefGoogle Scholar
  15. [15]
    Zhang H., Wang Z., Li R., Guo J., Li Y., Zhu J., Xie X., Chemos-phere, 2017, 185, 351CrossRefGoogle Scholar
  16. [16]
    Jin H., Wang X., Shen Y., Gu Z., J. Anal. Appl. Pyrol., 2014, 110, 18CrossRefGoogle Scholar
  17. [17]
    Qin D., Zhang F., Dong S., Zhao Y., Xu G., Zhang X., RSC Adv., 2016, 6(108), 106218CrossRefGoogle Scholar
  18. [18]
    Qin D., Liu Z., Zhao Y., Xu G., Zhang F., Zhang X., Carbon, 2018, 130, 664CrossRefGoogle Scholar
  19. [19]
    Liu X., Yin H., Lin A., Guo Z., J. Environmental Chemical Engi-neering, 2017, 5(1), 870CrossRefGoogle Scholar
  20. [20]
    Zhang X., Dong Z., Liu S., Shi Y., Dong Y., Feng W., Sensor. Actuat. B: Chem., 2017, 243, 1224CrossRefGoogle Scholar
  21. [21]
    Jin S., Deng H., Long D., Liu X., Zhan L., Liang X., Qiao W., Ling L., J. Power Sources, 2011, 196(8), 3887CrossRefGoogle Scholar
  22. [22]
    Xia H., Wan Y., Yuan G., Fu Y., Wang X., J. Power Sources, 2013, 241, 486CrossRefGoogle Scholar
  23. [23]
    Chai F., Li K., Song C., Guo X., J. Colloid Interf. Sci., 2016, 475, 119CrossRefGoogle Scholar
  24. [24]
    Zhang Z., Kong J., J. Hazard. Mater., 2011, 193, 325CrossRefGoogle Scholar
  25. [25]
    Li W., Wang Y., Irini A., Chem. Eng. J., 2014, 244, 1CrossRefGoogle Scholar
  26. [26]
    Wu W., Liu G., Xie Q., Liang S., Zheng H., Yuan R., Su W., Wu L., Green Chem., 2012, 14(6), 1705CrossRefGoogle Scholar
  27. [27]
    Wu W., Lin R., Shen L., Liang R., Yuan R., Wu L., Phys. Chem. Chem. Phys., 2013, 15(44), 19422CrossRefGoogle Scholar
  28. [28]
    Wu W., Liang S., Chen Y., Shen L., Yuan R., Wu L., Mater. Res. Bull., 2013, 48(4), 1618CrossRefGoogle Scholar
  29. [29]
    Liang S., Liang R., Wen L., Yuan R., Wu L., Fu X., Appl. Catal. B: Environ., 2012, 125, 103CrossRefGoogle Scholar
  30. [30]
    Liang S., Wen L., Liu G., Zhu S., Yuan R., Wu L., Catal. Today, 2013, 201, 175CrossRefGoogle Scholar
  31. [31]
    Wang Y., Zhang H., Zhang J., Lu C., Huang Q., Wu J., Liu F., J. Hazard. Mater., 2011, 192(1), 35Google Scholar
  32. [32]
    Zhu X. D., Wang Y. J., Sun R. J., Zhou D. M., Chemosphere, 2013, 92(8), 925CrossRefGoogle Scholar
  33. [33]
    Wang X., Jia J., Wang Y., Chem. Eng. J., 2017, 315, 274CrossRefGoogle Scholar
  34. [34]
    Han S. K., Hwang T. M., Yoon Y., Kang J. W., Chemosphere, 2011, 84(8), 1095CrossRefGoogle Scholar
  35. [35]
    Giannakis S., Liu S., Carratalà A., Rtimi S., Talebi A. M., Bensimon M., Pulgarin C., J. Hazard. Mater., 2017, 339, 223CrossRefGoogle Scholar
  36. [36]
    Malato S., Caceres J., Environ. Sci. Technol., 2001, 35, 8CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of EnvironmentHarbin Institute of TechnologyHarbinP. R. China
  2. 2.Key Labroratory of Songliao Aquatic Environnment, Ministry of EducationJilin Jianzhu UniversityChangchunP. R. China
  3. 3.Key Laboratory of Groundwater Resource and Environment, Ministry Education, College of Environment and ResourcesJilin UniversityChangchunP. R. China
  4. 4.State Key Laboratory of Urban Water Resource and EnvironmentHarbin Institute of TechnologyHarbinP. R. China

Personalised recommendations