Advertisement

Photocatalytic Degradation of 4-Chlorophenol by Gd-Doped β-Bi2O3 Under Visible Light Irradiation

  • Shijing LinEmail author
  • Wutong Du
  • Laga Tong
  • Tao Ji
  • Xinxin Jiao
Article
  • 9 Downloads

Abstract

Chlorophenols are known as persistent organic pollutants. Therefore, research on the removal of chlorophenols has attracted widespread attention. Herein, the photocatalytic degradation of 4-chlorophenol by Gd-doped β-Bi2O3 under visible light irradiation was studied. The results showed that Gd-doped β-Bi2O3 materials are efficient catalysts for the photocatalytic degradation of chlorophenols, and 2%(atomic fraction) Gd-doped β-Bi2O3 exhibits the highest photocatalytic activity for 4-chlorophenol degradation, because doping an appropriate amount of Gd3+ ions can effectively reduce the recombination rate of the photogenerated e/h+ pairs and then enhance the photocatalytic performance. When the reaction was carried out at 25 °C for 6 h using the 2% Gd-doped β-Bi2O3 micro/nano mate-rials of 200 mg and at air flow rate of 40 mL/min, the degradation rate of 4-chlorophenol reached 92.3%. Additionally, based on the analysis of the products, it was speculated that the dominant photocatalytic degradation mechanism of 4-chlorophenol by Gd-doped β-Bi2O3 under visible light irradiation is an oxidative process involving an attack by the hydroxyl radical.

Keywords

Bi2O3 Doping Photocatalysis 4-Chlorophenol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Huang Z. D., Wen M., Wu Q. S., Zhang Y. Q., Fang H., Chen H. X., J. Colloid Interface Sci., 2015, 460, 230CrossRefGoogle Scholar
  2. [2]
    Vallejo M., San Román M. F., Ortiz I., Environ. Sci. Technol., 2013, 47(21), 12400CrossRefGoogle Scholar
  3. [3]
    Shen W. J., Mu Y., Wang B. N., Ai Z. H., Zhang L. Z., Appl. Surf. Sci., 2017, 393, 316CrossRefGoogle Scholar
  4. [4]
    Nguyen A. T., Juang R. S., J. Environ. Manage., 2015, 147, 271CrossRefGoogle Scholar
  5. [5]
    Chauhan R., Srivastava V. C., Hiwarkar A. D., J. Taiwan Inst. Chem. Eng., 2016, 69, 106CrossRefGoogle Scholar
  6. [6]
    Pozan G. S., Kambur A., Appl. Catal. B: Environ., 2013, 129, 409CrossRefGoogle Scholar
  7. [7]
    Luo X. C., Zhu G. Q., Peng J. H., Wei X. M., Hojamberdiev M., Jin L., Liu P., Appl. Surf. Sci., 2015, 351, 260CrossRefGoogle Scholar
  8. [8]
    Zhang L. S., Wang W. Z., Yang J., Chen Z. G., Zhang W. Q., Zhou L., Liu S. W., Appl. Catal. A: General, 2006, 308, 105CrossRefGoogle Scholar
  9. [9]
    Chai S.Y., Kim Y. J., Jung M. H., Chakraborty A. K., Jung D., Lee W. I., J. Catal., 2009, 262(1), 144CrossRefGoogle Scholar
  10. [10]
    Xie J. M., Lv X. M., Chen M., Zhao G. Q., Song Y. Z., Lu S. S., Dyes Pigm., 2008, 77(1), 43CrossRefGoogle Scholar
  11. [11]
    Wu X. H., Qin W., Li L., Guo Y., Xie Z. Y., Catal. Commun., 2009, 10(5), 600CrossRefGoogle Scholar
  12. [12]
    Li J. Z., Zhong J. B., Zeng J., Feng F. M., He J. J., Mat. Sci. Semicon. Proc., 2013, 16(2), 379CrossRefGoogle Scholar
  13. [13]
    Li L. Z., Yan B., J. Non-Cryst. Solids, 2009, 355(13), 776CrossRefGoogle Scholar
  14. [14]
    Fang J., Bao H. Z., He B., Wang F., Si D. J., Jiang Z. Q., Pan Z. Y., Wei S. Q., Huang W. X., J. Phys. Chem. C, 2007, 111(51), 19078CrossRefGoogle Scholar
  15. [15]
    Hu L. M., Dong S. Y., Li Q. L., Feng J. L., Pi Y. Q., Liu M. L., Sun J. Y., Sun J. H., J. Alloy. Compd., 2015, 633, 256CrossRefGoogle Scholar
  16. [16]
    Liu X., Kang Y., Mater. Lett., 2016, 164, 229CrossRefGoogle Scholar
  17. [17]
    Sher Shah M. S. A., Park A. R., Zhang K., Park J. H., Yoo P. J., ACS Appl. Mater. Inter., 2012, 4(8), 3893CrossRefGoogle Scholar
  18. [18]
    He G. P., Xing C. L., Xiao X., Hu R. P., Zuo X. X., Nan J. M., Appl. Catal. B: Environ., 2015, 170/171, 1Google Scholar
  19. [19]
    Xu J. J., Chen M. D., Fu D. G., Trans. Nonferrous Met. Soc. China, 2011, 21(2), 340CrossRefGoogle Scholar
  20. [20]
    Selvam N. C. S., Narayanan S., Kennedy L. J., Vijiaya J. J., J. Environ. Sci., 2013, 25(10), 2157CrossRefGoogle Scholar
  21. [21]
    Palanisamy B., Babu C. M., Sundaravel B., Anandan S., Murugesan V., J. Hazard. Mater., 2013, 252/253, 233Google Scholar
  22. [22]
    Ki S. J., Jeon K. J., Park Y. K., Jeong S., Lee H., Jung S. C., Catal. Today, 2017, 293/294, 15Google Scholar
  23. [23]
    Yue B., Zhou Y., Xu J. Y., Wu Z. Z., Zhang X., Zou Y. F., Jin S. L., Environ. Sci. Technol., 2002, 36(6), 1325CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shijing Lin
    • 1
    Email author
  • Wutong Du
    • 1
  • Laga Tong
    • 1
  • Tao Ji
    • 1
  • Xinxin Jiao
    • 1
  1. 1.College of Chemical EngineeringBeijing Institute of Petrochemical TechnologyBeijingP. R. China

Personalised recommendations