Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 5, pp 767–771 | Cite as

Exploration on Charge Transfer and Absorption Spectra of Spiro[fluorene-9,90-xanthene]-based Polyoxometalate Hybrids Toward High Performance Dye-sensitized Solar Cell

  • Shuo Wang
  • Yu Gao
  • Xiaofang Su
  • Likai Yan
Article
  • 36 Downloads

Abstract

Based on spiro[fluorene-9,90-xanthene](SFX, dye 1), the Lindqvist-type polyoxometalate(POM) functio-nalized with SFX and its derivatives(dyes 2―4) used in dye-sensitized solar cells(DSSCs) were designed and inves-tigated with the density functional theory(DFT) and time-dependent DFT(TD-DFT) calculations. The results indicate that Lindqvist-type POM is the main contribution to the lowest unoccupied molecular orbital(LUMO) and affects the LUMO energies of dyes 2―4. The maximum absorptions of the designed dyes containing POM(dyes 2―4) are red shifted comparing with that of dye 1. The introduction of electron-donating group onto SFX segment is helpful to red shift the absorption spectra. The major factors affecting the performance of DSSCs, including light harvesting and electron injection were evaluated. Considering the absorption spectra and photovoltaic parameters, dyes 3 and 4 are promising high performance dye sensitizers in n-type DSSCs.

Keywords

Polyoxometalate Dye-sensitized solar cell Density functional theory Absorption spectrum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    O’Regan B., Grätzel M., Nature, 1991, 353(6346), 737CrossRefGoogle Scholar
  2. [2]
    Hagfeldt A., Grätzel M., Acc. Chem. Res., 2000, 33(5), 269CrossRefPubMedGoogle Scholar
  3. [3]
    Yao Z., Zhang M., Wu H., Yang L., Li R., Wang P., J. Am. Chem. Soc., 2015, 137(11), 3799CrossRefPubMedGoogle Scholar
  4. [4]
    Wu Y. Z., Zhu W., Chem. Soc. Rev., 2013, 44(24), 2039CrossRefGoogle Scholar
  5. [5]
    Qin P., Zhu H., Edvinsson T., Boschloo G., Hagfeldt A., Sun L. C., J. Am. Chem. Soc., 2008, 130(27), 8570CrossRefPubMedGoogle Scholar
  6. [6]
    Zigler D. F., Morseth Z. A., Wang L., Ashford D. L., Brennaman M. K., Grumstrup E. M., Brigham E. C., Gish M. K., Dillon R. J., Ali-babaei L., Meyer G. J., Meyer T. J., Papanikolas J. M., J. Am. Chem. Soc., 2016, 138(13), 4426CrossRefPubMedGoogle Scholar
  7. [7]
    Chou C. C., Hu F. C., Yeh H. H., Wu H. P., Chi Y., Clifford J. N., Pa-lomares E., Liu S. H., Chou P. T., Lee G. H., Angew. Chem., 2014, 126(1), 182CrossRefGoogle Scholar
  8. [8]
    Sadakane M., Steckhan E., Chem. Rev., 1998, 98(1), 219CrossRefPubMedGoogle Scholar
  9. [9]
    Wang S. S., Yang G. Y., Chem. Rev., 2015, 115(11), 4893CrossRefPubMedGoogle Scholar
  10. [10]
    Rhule J. T., Hill C. L., Judd D. A., Chem. Rev., 1998, 98(1), 327CrossRefPubMedGoogle Scholar
  11. [11]
    Sun L. L., Zhang T., Yan L. K., Su Z. M., Chem. J. Chinese Universi-ties, 2016, 37(3), 529Google Scholar
  12. [12]
    Guo X. W., Li X. H., Liu Z. J., Chen W. L., Zheng X. T., Wang E. B., Su Z. M., Inorg. Chem. Front., 2017, 4(7), 1187CrossRefGoogle Scholar
  13. [13]
    Shan C. H., Zhang H., Chen W. L., Su Z. M., Wang E. B., J. Mater. Chem. A, 2016, 4(9), 3297CrossRefGoogle Scholar
  14. [14]
    Strong J. B., Yap G. P. A., Ostrander R., Liable-Sands L. M., Rhein-gold A. L., Thouvenot R., Gouzerh P., Maatta E. A., J. Am. Chem. Soc., 2000, 122(4), 639CrossRefGoogle Scholar
  15. [15]
    Wu H. N., Zhang T., Wu C. X., Guan W., Yan L. K., Su Z. M., Dyes. Pigm., 2016, 130, 168CrossRefGoogle Scholar
  16. [16]
    Yan L. K., Jin M. S., Song P., Su Z. M., J. Phys. Chem. B, 2010, 114(11), 3754CrossRefPubMedGoogle Scholar
  17. [17]
    Wang J., Li H., Ma N. N., Yan L. K., Su Z. M., Dyes. Pigm., 2013, 99(2), 440CrossRefGoogle Scholar
  18. [18]
    Wu H. N., Zhang T., Yan L. K., Su Z. M., RSC Adv., 2015, 5(113), 93659CrossRefGoogle Scholar
  19. [19]
    Xu B. B., Lu M., Kang J., Wang D. G., Brown J., Peng Z. H., Chem. Mater., 2005, 17(11) 2841CrossRefGoogle Scholar
  20. [20]
    Lu M., Xie B. H., Kang J., Chen F. C., Yang Y., Peng Z. H., Chem. Mater., 2005, 17(2), 402CrossRefGoogle Scholar
  21. [21]
    Sun M. L., Xu R. C., Xie L. H., Wei Y., Huang W., Chin. J. Chem., 2015, 33(8), 815CrossRefGoogle Scholar
  22. [22]
    Maciejczyk M., Ivaturi A., Robertson N., J. Mater. Chem. A, 2016, 4(13), 4855CrossRefGoogle Scholar
  23. [23]
    Xu B., Bi D. Q., Hua Y., Liu P., Cheng M., Grätzel M., Kloo L., Hagfeldt A., Sun L. C., Energy. Environ. Sci., 2016, 9(3), 873CrossRefGoogle Scholar
  24. [24]
    Maciejczyk M., Ivaturi A., Robertson N., J. Mater. Chem. A, 2016, 4(13), 4855CrossRefGoogle Scholar
  25. [25]
    Zhang T., Ma N. N., Yan L. K., Wen S. Z., Ma T. Y., Su Z. M., J. Mol. Graph. Model, 2013, 46(11), 59CrossRefPubMedGoogle Scholar
  26. [26]
    Rubinstein A., Jiménez-Lozanao P., Carbó J. J., Poblet J. M., Neumann R., J. Am. Chem. Soc., 2014, 136(31), 10941CrossRefPubMedGoogle Scholar
  27. [27]
    Yan L. K., López X., Carbó J. J., Sniatynsky R., Duncan D. C., Poblet J. M., J. Am. Chem. Soc., 2008, 130(26), 8223CrossRefPubMedGoogle Scholar
  28. [28]
    Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Peters-son G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmay-lov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, Revision A.02, Gaussian Inc., Wallingford CT, 2009 Google Scholar
  29. [29]
    Becke A. D., J. Chem. Phys., 1993, 98(7), 5648CrossRefGoogle Scholar
  30. [30]
    Lee C., Yang W., Parr R. G., Phys. Rev. B: Condens. Matter, 1988, 37(2), 785CrossRefGoogle Scholar
  31. [31]
    Adamo C., Barone V., J. Chem. Phys., 1999, 110(13), 6158CrossRefGoogle Scholar
  32. [32]
    Tomasi J., Mennucci B., Cammi R., Chem. Rev., 2005, 105(8), 2999CrossRefPubMedGoogle Scholar
  33. [33]
    Marinado T., Hagberg D. P., Hedlund M., Edvinsson T., Johansson E. M. J., Boschloo G., Rensmo H., Brinck T., Sun L. C., Phys. Chem. Chem. Phys., 2009, 11(1), 133CrossRefPubMedGoogle Scholar
  34. [34]
    Islam A., Sugihara H., Arakawa H., J. Photochem. Photobiol. A, 2003, 158(2), 131CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Functional Materials, Chemistry and Local United Engineering Lab for Power Battery, Faculty of ChemistryNortheast Normal UniversityChangchunP. R. China

Personalised recommendations