Advertisement

Novel Approach for the Decoration of Magnetic Carbon Nanospheres with Platinum Nanoparticles and Their Enhanced Peroxidase Activity for the Colorimetric Detection of H2O2

  • Ce SuEmail author
  • Lingling Bai
  • Hongbo Zhang
  • Kaishan Chang
  • Guanbin Li
  • Siliang LiEmail author
Article
  • 13 Downloads

Abstract

Pt/Fe3O4-DIB-DETA-CNS(PFDDC) nanocomposite(DIB=2,4-dihydroxybenzaldehyde; DETA=diethylene- triamine; CNS=carbon nanosphere) was synthesized by dispersing Pt nanoparticles on magnetic carbon nanospheres. The structure, morphology and composition of the nanocomposite were studied by X-ray diffraction(XRD), transmission electron microscopy(TEM), energy-dispersive X-ray spectroscopy(EDX) and X-ray photoelectron spectroscopy(XPS). In addition, the nanocomposite showed superior peroxidase-like activity towards 3,3′,5,5′-tetramethylbenzidine(TMB) with a visual color change in the presence of hydrogen peroxide(H2O2). Therefore, the PFDDC nanocomposite provides a sensing platform for the colorimetric detection of H2O2 with high sensitivity and selectivity. Furthermore, the nano-composite can be conveniently preserved and separated. These features enable the nanocomposite to colorimetrically detect H2O2 for potential pharmaceutical, environmental and industrial applications.

Keywords

Pt nanoparticle Magnetic carbon nanosphere Peroxidase-like activity Colorimetric sensor H2O2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Vilema-Enriquez G., Arroyo A., Grijalva M., Amador-Zafra R. I., Camacho J., Oxid. Med. Cell Longev., 2016, 2016, 1CrossRefGoogle Scholar
  2. [2]
    Jin L., Meng Z., Zhang Y., Cai S., Zhang Z., Li C., Shang L., Shen Y., ACS Appl. Mater. Interfaces, 2017, 9(11), 10027CrossRefGoogle Scholar
  3. [3]
    Wang Q., Yun Y., Zheng J., Microchim. Acta, 2009, 167, 153CrossRefGoogle Scholar
  4. [4]
    Wulff G., Chem. Rev., 2002, 102(1), 1CrossRefGoogle Scholar
  5. [5]
    Chen L., Wang N., Wang X., Ai S., Microchim. Acta, 2013, 180, 1517CrossRefGoogle Scholar
  6. [6]
    Saa L., Coronado-Puchau M., Pavlov V., Liz-Marzán L. M., Nanoscale, 2014, 6(13), 7405CrossRefGoogle Scholar
  7. [7]
    Gao L., Zhuang J., Nie L., Zhang J., Zhang Y., Gu N., Wang T., Feng J., Yang D., Perrett S., Yan X., Nat. Nanotechnol., 2007, 2(9), 577CrossRefGoogle Scholar
  8. [8]
    Hu A., Liu Y., Deng H., Hong G., Liu A., Biosens. Bioelectron., 2014, 61, 374CrossRefGoogle Scholar
  9. [9]
    Hong L., Liu A. L., Li G. W., Chen W., Lin X. H., Biosens. Bioelectron., 2013, 43(1), 1CrossRefGoogle Scholar
  10. [10]
    Ibupoto Z. H., Khun K., Lu J., Willander M., Appl. Phys. Lett., 2013, 102(10), 6CrossRefGoogle Scholar
  11. [11]
    Mu J., Wang Y., Zhao M., Zhang L., Chem. Commun., 2012, 48(19), 2540CrossRefGoogle Scholar
  12. [12]
    André R., Natálio F., Humanes M., Leppin J., Heinze K., Wever R., Schröder H. C., Müller W. E. G., Tremel W., Adv. Funct. Mater., 2011, 21(3), 501CrossRefGoogle Scholar
  13. [13]
    Mohammadpour Z., Safavi A., Shamsipur M., Chem. Eng. J., 2014, 255, 1CrossRefGoogle Scholar
  14. [14]
    Liu B., Yu S., Wang Q., Hu W., Jing P., Liu Y., Jia W., Liu Y., Liu L., Zhang J., Chem. Commun., 2013, 49(36), 3757CrossRefGoogle Scholar
  15. [15]
    Frey N. A., Phan M. H., Srikanth H., Srinath S., Wang C., Sun S., J. Appl. Phys., 2009, 105(7), 1CrossRefGoogle Scholar
  16. [16]
    Zhang B., Cui Y., Chen H., Liu B., Chen G., Tang D., Electroana-lysis, 2011, 23(8), 1821CrossRefGoogle Scholar
  17. [17]
    Chen X. M., Lin Z. J., Jia T. T., Cai Z. M., Huang X. L., Jiang Y. Q., Chen X., Chen G. N., Anal. Chim. Acta, 2009, 650(1), 54CrossRefGoogle Scholar
  18. [18]
    Xu C., Xu K., Gu H., Zheng R., Liu H., Zhang X., Guo Z., Xu B., J. Am. Chem. Soc., 2004, 126, 9938CrossRefGoogle Scholar
  19. [19]
    Wang B., Hai J., Wang Q., Li T., Yang Z., Angew. Chemie-Int. Ed., 2011, 50(13), 3063CrossRefGoogle Scholar
  20. [20]
    Dong Z., Le X., Liu Y., Dong C., Ma J., J. Mater. Chem. A, 2014, 2(44), 18775CrossRefGoogle Scholar
  21. [21]
    Wu Z., Sun C., Chai Y., Zhang M., RSC Adv., 2011, 1(7), 1179CrossRefGoogle Scholar
  22. [22]
    Liu J., Qiao S. Z., Hu Q. H., Lu G. Q., Small, 2011, 7(4), 425CrossRefGoogle Scholar
  23. [23]
    Zhang P., Qiao Z. A., Dai S., Chem. Commun., 2015, 51(45), 9246CrossRefGoogle Scholar
  24. [24]
    Wang B., Wang B., Wei P., Wang X., Lou W., Dalt. Trans., 2012, 41(3), 896CrossRefGoogle Scholar
  25. [25]
    Xu Z., Shen C., Hou Y., Gao H., Sun S., Chem. Mater., 2009, 21(9), 1778CrossRefGoogle Scholar
  26. [26]
    Sun X., Li Y., Angew. Chemie-Int. Ed., 2004, 43(5), 597CrossRefGoogle Scholar
  27. [27]
    Hu Y., Liu Y., Qian H., Li Z., Chen J., Langmuir, 2010, 26(23), 18570CrossRefGoogle Scholar
  28. [28]
    Chen L. L., Guo X. P., Zhang G. A., J. Power Sources, 2017, 360, 106CrossRefGoogle Scholar
  29. [29]
    Li W., Chen B., Zhang H., Sun Y., Wang J., Zhang J., Fu Y., Biosens. Bioelectron., 2015, 66, 251CrossRefGoogle Scholar
  30. [30]
    Fu Y., Zhao X., Zhang J., Li W., J. Phys. Chem. C, 2014, 118(31), 18116CrossRefGoogle Scholar
  31. [31]
    Kong L., Lu X., Bian X., Zhang W., Wang C., Langmuir, 2010, 26(8), 5985CrossRefGoogle Scholar
  32. [32]
    Zheng X., Zhu Q., Song H., Zhao X., Yi T., Chen H., Chen X., ACS Appl. Mater. Interfaces, 2015, 7(6), 3480CrossRefGoogle Scholar
  33. [33]
    Wang Q., Zhang X., Huang L., Zhang Z., Dong S., ACS Appl. Mater. Interfaces, 2017, 9(8), 7465CrossRefGoogle Scholar
  34. [34]
    Fan J., Yin J. J., Ning B., Wu X., Hu Y., Ferrari M., Anderson G. J., Wei J., Zhao Y., Nie G., Biomaterials, 2011, 32(6), 1611CrossRefGoogle Scholar
  35. [35]
    Chen X., Chen X., Su B., Cai Z., Oyama M., Sensors Actuators, B: Chem., 2014, 201, 286CrossRefGoogle Scholar
  36. [36]
    Josephy D., Eling T., Mason R., J. Biol. Chem., 1982, 257(7), 3669Google Scholar
  37. [37]
    Ishibashi K., Fujishima A., Watanabe T., Hashimoto K., J. Photo-chem. Photobiol. A Chem., 2000, 134, 139CrossRefGoogle Scholar
  38. [38]
    Niu X., He Y., Pan J., Li X., Qiu F., Yan Y., Shi L., Zhao H., Lan M., Anal. Chim. Acta, 2016, 947, 42CrossRefGoogle Scholar
  39. [39]
    Wang N., Zhu L., Wang D., Wang M., Lin Z., Tang H., Ultrason. Sonochem., 2010, 17(3), 526CrossRefGoogle Scholar
  40. [40]
    Wei H., Wang E., Anal. Chem., 2008, 80(6), 2250CrossRefGoogle Scholar
  41. [41]
    Wu Y., Ma Y., Xu G., Wei F., Ma Y., Song Q., Wang X., Tang T., Song Y., Shi M., Xu X., Hu Q., Sensors Actuators B Chem., 2017, 249, 195CrossRefGoogle Scholar
  42. [42]
    Lu Y., Ye W., Yang Q., Yu J., Wang Q., Zhou P., Wang C., Xue D., Zhao S., Sensors Actuators, B: Chem., 2016, 230, 721CrossRefGoogle Scholar
  43. [43]
    Zhang L., Hai X., Xia C., Chen X. W., Wang J. H., Sensors Actua-tors, B: Chem., 2017, 248, 374CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Petrochemical EngineeringLanzhou University of TechnologyLanzhouP. R. China

Personalised recommendations