Chemical Research in Chinese Universities

, Volume 34, Issue 6, pp 923–928 | Cite as

Facile Synthesis of 1,5-Diaryl-4-pyridyl-1,2,3-triaozle Derivatives

  • Yingnan Wang
  • Chiyu Wei
  • Zhiguang Song


A feasible approach to synthesize 1,5-diaryl-4-pyridyl-1,2,3-triaozle via a sequential route from 2-alkynyl pyridine was developed. In this work, KOH was identified as a crucial base to promote the Pd-catalyzed arylation step. Compared to the reported methods, this protocol largely improved the reaction efficiency with overall excellent yield and good functional group tolerance.


1,2,3-Triazole Arylation Triazole ligand 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aromi G., Barrios L. A., Roubeau O., Gamez P., Coord. Chem. Rev., 2011, 255, 485CrossRefGoogle Scholar
  2. [2]
    Hein J. E., Fokin V. V., Chem. Soc. Rev., 2010, 39, 1302CrossRefGoogle Scholar
  3. [3]
    Huang D. S., Zhao P. X., Astruc D., Coord. Chem. Rev., 2014, 272, 145CrossRefGoogle Scholar
  4. [4]
    Monguchi Y., Sawama Y., Sajiki H., Heterocycles, 2015, 91, 239CrossRefGoogle Scholar
  5. [5]
    Verma A. K., Jha R. R., Chaudhary R., Tiwari R. K., Danodia A. K., Adv. Synth. Catal., 2013, 355, 421Google Scholar
  6. [6]
    Liu Z. H., Wang Y. N., Sun J. B., Yang Y., Liu Q. W., Song Z. G., Chem. Res. Chinese Universities, 2015, 31(4), 526CrossRefGoogle Scholar
  7. [7]
    Duan H., Sengupta S., Petersen J. L., Akhmedov N. G., Shi X., J. Am. Chem. Soc., 2009, 131, 12100CrossRefGoogle Scholar
  8. [8]
    Saravanakumar R., Ramkumar V., Sankararaman S., Organometallics, 2011, 30, 1689CrossRefGoogle Scholar
  9. [9]
    Wang K., Chen M., Wang Q., Shi X., Lee J. K., J. Org. Chem., 2013, 78, 7249CrossRefGoogle Scholar
  10. [10]
    Albrecht M., Koten G., Angew. Chem. Int. Ed., 2001, 40, 3750CrossRefGoogle Scholar
  11. [11]
    Gunanathan C., Milstein D., Acc. Chem. Res., 2011, 44, 588CrossRefGoogle Scholar
  12. [12]
    Gunanathan C., Milstein D., Chem. Rev., 2014, 114, 12024CrossRefGoogle Scholar
  13. [13]
    Leis W., Mayer H. A., Kaska W. C., Coord. Chem. Rev., 2008, 252, 1787CrossRefGoogle Scholar
  14. [14]
    Milstein D., Top. Catal., 2010, 53, 915CrossRefGoogle Scholar
  15. [15]
    Pandarus V., Zargarian D., Organometallics, 2007, 26, 4321CrossRefGoogle Scholar
  16. [16]
    Schneider S., Meiners J., Askevold B., Eur. J. Inorg. Chem., 2012, 2012, 412CrossRefGoogle Scholar
  17. [17]
    Selander N., Szabo K. J., Chem. Rev., 2011, 111, 2048CrossRefGoogle Scholar
  18. [18]
    Zell T., MIlstein D., Acc. Chem. Res., 2015, 48, 1979CrossRefGoogle Scholar
  19. [19]
    Fletcher J. T., Bumgarner B. J., Engels N. D., Skoglund D. A., Organometallics, 2008, 27, 5430CrossRefGoogle Scholar
  20. [20]
    Li Y., Zhao L., Tam A. Y. Y., Wong K. M. C., Wu L., Yam V. W. W., Chem. Eur. J., 2013, 19, 14496CrossRefGoogle Scholar
  21. [21]
    Allampally N. K., Daniliuc C. G., Strassert C. A., Cola L. D., Inorg. Chem., 2015, 54, 1588CrossRefGoogle Scholar
  22. [22]
    Chan A. K. W., Wu D., Wong K. M. C., Yam V. W. W., Inorg. Chem., 2016, 55, 3685CrossRefGoogle Scholar
  23. [23]
    Meudtner R. M., Ostermeier M., Goddard R., Limberg C., Hecht S., Chem. Eur. J., 2007, 13, 9834CrossRefGoogle Scholar
  24. [24]
    Chuprakov S., Chernyak N., Dudnik A. S., Gevorgyan V., Org. Lett., 2007, 9, 2333Google Scholar
  25. [25]
    Ackermann L., Vicente R., Born R., Adv. Synth. Catal., 2008, 35, 741CrossRefGoogle Scholar
  26. [26]
    Ackermann L., Potukuchi H. K., Landsberg D., Vicente R., Org. Lett., 2008, 10, 3081CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Organic Chemistry, College of ChemistryJilin UniversityChangchunP. R. China

Personalised recommendations