Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 4, pp 598–603 | Cite as

Structure of a Mixture of Graphene Plates and Ionic Liquid 1-Octyl-3-methylimidazolium Hexafluoroborate

  • Siyan Chen
  • Zhenhai Gao
Article
  • 19 Downloads

Abstract

We reported a molecular dynamics simulation study of a mixture of 1-octyl-3-methylimidazolium hexafluoroborate([C8MIN]+[PF6]), an ionic liquid, and pristine graphene. Our simulations were performed under various conditions, including several temperatures and distances between graphene plates. By studying the liquid structure of the ionic-liquid graphene mixture, we found that the transition for the ionic liquids entering the middle of two graphene plates should occur within 1.00 and 1.50 nm in the temperature range studied(300―600 K). We also studied the pair correlations between the graphene plates and the head and tail of the cation and the anion. Our study at the molecular level can aid in understanding the detailed molecular structure of the mixture.

Keywords

Nanofluid Graphene Ionic liquid Molecular dynamic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Mukai K., Asaka K., Sugino T., Kiyohara K., Takeuchi I., Terasawa N., Futaba D. N., Hata K., Fukushima T., Aida T., Adv. Mater., 2010, 21(16), 1582CrossRefGoogle Scholar
  2. [2]
    Hermann W., Angew. Chem. Inter. Ed., 2008, 47(4), 654CrossRefGoogle Scholar
  3. [3]
    Fukushima T., Aida T., Chemistry―A European Journal, 2007, 13(18), 5048CrossRefGoogle Scholar
  4. [4]
    Miyako E., Nagata H., Funahashi R., Hirano K., Hirotsu T., Chemsuschem., 2010, 2(8), 740CrossRefGoogle Scholar
  5. [5]
    Takanori F., Takuzo A., Small, 2006, 2(4), 554CrossRefGoogle Scholar
  6. [6]
    Fukushima T., Kosaka A., Ishimura Y., Yamamoto T., Takigawa T., Ishii N., Aida T., Science, 2003, 300(5628), 2072CrossRefPubMedGoogle Scholar
  7. [7]
    Hu Z., Margulis C. J., Accounts of Chemical Research, 2007, 40(11), 1097CrossRefPubMedGoogle Scholar
  8. [8]
    Wang J., Chu H., Li Y., ACS Nano, 2008, 2(12), 2540CrossRefPubMedGoogle Scholar
  9. [9]
    Zhao L., Li Y., Liu Z., Shimizu H., Chemistry of Materials, 2010, 22(21), 5949CrossRefGoogle Scholar
  10. [10]
    Shih C., Lin S., Strano M. S., Blankschtein D., J. Am. Chem. Soc., 2010, 132(41), 14638CrossRefPubMedGoogle Scholar
  11. [11]
    Lee J., Aida T., Chem. Commun., 2011, 47(24), 6757CrossRefGoogle Scholar
  12. [12]
    Li J., Zhang J., Zhao Y., Han B., Yang G., Chem. Commun., 2012, 48(7), 994CrossRefGoogle Scholar
  13. [13]
    Wang Z., Li F., Xia J., Xia L., Zhang F., Bi S., Shi G., Xia Y., Liu J., Li Y., Biosensors & Bioelectronics, 2014, 61(6), 391Google Scholar
  14. [14]
    Ahmad I., Khan U., Gun'ko Y. K., J. Mater. Chem., 2011, 21(42), 16990CrossRefGoogle Scholar
  15. [15]
    Wang S., Li S., Cao Z., Yan T., J. Phys. Chem. C, 2015, 114(2), 990CrossRefGoogle Scholar
  16. [16]
    Wang L., Zhao J., Wang L., Yan T., Sun Y. Y., Zhang S. B., Physical Chemistry Chemical Physics, 2011, 13(47), 21126CrossRefPubMedGoogle Scholar
  17. [17]
    Ji L., Lin Z., Alcoutlabi M., Zhang X., Energy & Environmental Science, 2011, 4(8), 2682CrossRefGoogle Scholar
  18. [18]
    García G., Atilhan M., Aparicio S., J. Phys. Chem. B, 2014, 118(38), 11330CrossRefPubMedGoogle Scholar
  19. [19]
    Atilhan M., Aparicio S., J. Phys. Chem. C, 2017, 118(36), 21081CrossRefGoogle Scholar
  20. [20]
    Zhao Y., Hu Z., J. Phys. Chem. B, 2013, 117(36), 10540CrossRefPubMedGoogle Scholar
  21. [21]
    David V. D. S., Lindahl E., Hess B., Groenhof G., Mark A. E., Berendsen H. J. C., J. Comput. Chem., 2010, 26(16), 1701Google Scholar
  22. [22]
    Canongia Lopes J. N., Deschamps J., Pádua A. A. H., J. Phys. Chem. B, 2004, 108(6), 2038CrossRefGoogle Scholar
  23. [23]
    Berne B. J., Borkovec M., Straub J. E., J. Phys. Chem., 1988, 92(13), 3711CrossRefGoogle Scholar
  24. [24]
    Essmann U., J. Chem. Phys., 1995, 103(19), 8577CrossRefGoogle Scholar
  25. [25]
    Center for Greenchemistry and Catalysis, Lonic Liquid, Product Presentation, 1-Octyl-3-methylimidazolium Hexafluoroborate, https://doi.org/www.ionicliquid.org/product/Imidazolium/MIm/2014-04-03/52.html
  26. [26]
    Cui W., Preparation and Performance of Electrolyte Containing Ionic Liquid for Li Ionic Batteries, Harbin Institute of Technology, 2010Google Scholar
  27. [27]
    Feng X., Ouyang M., Liu X., Lu L., Xia Y., He X., Energy Storage Materials, 2017, 24(10), 2450Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Supramolecular Structure and Materials, College of ChemistryJilin UniversityChangchunP. R. China
  2. 2.State Key Laboratory of Automotive Simulation and ControlJilin UniversityChangchunP. R. China

Personalised recommendations