Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 6, pp 989–994 | Cite as

Surfactant Effects on the Permeability of Photosynthetic Membrane from Rhodobacter sphaeroides 2.4.1 Probed by Electrochromic Shift of Endogenous Carotenoids

  • Xuan Zhou
  • Jie Yu
  • Peng WangEmail author
  • Jianping Zhang
Article
  • 10 Downloads

Abstract

Four surfactants, sodium cholate(SC), n-dodecyl-β-D-maltopyranoside(DDM), lauryldimethylamine oxide(LDAO) and Triton X-100(TX), which are generally used in photosynthetic pigment-protein complexes preparation, were studied on their interaction with photosynthetic membrane from Rhodobacter sphaeroides 2.4.1 by electrochromic absorption band-shift of endogenous carotenoids and by vesicle size measurements as well. The surfactant critical micelle concentration(cmc) was found to be negatively correlated with the capability of enhancing the permeability of photosynthetic membranes to proton, and more elaborated model of surfactants interacting with membranes was obtained. The electrochromic absorption band-shift measurement might develop into a useful tool to evaluate the effects of surfactants on various membranes.

Keywords

Surfactant Photosynthetic membrane Electrochromic effect Carotenoid Permeability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2018_8105_MOESM1_ESM.pdf (102 kb)
Surfactant Effects on the Permeability of Photosynthetic Membrane from Rhodobacter sphaeroides 2.4.1 Probed by Electrochromic Shift of Endogenous Carotenoids

References

  1. [1]
    Paternostre M. T., Roux M., Rigaud J. L., Biochem., 1988, 27, 2668CrossRefGoogle Scholar
  2. [2]
    Inoue T., Vesicles, Marcel Dekker, New York, 1996, 151Google Scholar
  3. [3]
    Ueno M., Biochem., 1989, 28, 5631CrossRefGoogle Scholar
  4. [4]
    Sun C., Ueno M., Colloid Polym. Sci., 2000, 278, 855CrossRefGoogle Scholar
  5. [5]
    Walde P., Sunamoto J., O’Connor C. J., Biochim. Biophys. Acta, 1987, 905, 30CrossRefGoogle Scholar
  6. [6]
    Paternostre M. T., Roux M., Rigaud J. L., Biochem., 1988, 27, 2668CrossRefGoogle Scholar
  7. [7]
    Paternostre M., Meyer O., Gabrielle-Madelmont C., Lesieur S., Ghanam M., Ollivon M., Biophys. J., 1995, 69, 2476CrossRefGoogle Scholar
  8. [8]
    Ruiz J., Goni F. M., Alonso A., Biochim. Biophys. Acta, 1988, 937, 127CrossRefGoogle Scholar
  9. [9]
    Nagawa Y., Regen S. L., J. Am. Chem. Soc., 1992, 114, 1668CrossRefGoogle Scholar
  10. [10]
    Edwards K., Almgren M., Langmuir, 1992, 8, 824CrossRefGoogle Scholar
  11. [11]
    de La Maza A., Parra J. L., Garcia M. T., Ribosa I., Sanchez Leal J., J. Colloid Interface Sci., 1992, 148, 310CrossRefGoogle Scholar
  12. [12]
    Lasch J., Biochim. Biophys. Acta, 1995, 1241, 269CrossRefGoogle Scholar
  13. [13]
    Inoue T., Yamahata T., Shimozawa R., J. Colloid Interface Sci., 1992, 149, 345CrossRefGoogle Scholar
  14. [14]
    Inoue T., In Vesicles: Surfactant Science Series, Marcel Dekker Inc., New York, 1996, 151Google Scholar
  15. [15]
    Albalak A., Zeidel M. L., Zucker S. D., Jackson A. A., Donovan J. M., Biochemistry, 1996, 35, 7936CrossRefGoogle Scholar
  16. [16]
    Treyer M., Walde P., Oberholzer T., Langmuir, 2002, 18, 1043CrossRefGoogle Scholar
  17. [17]
    Young M., Dinda M., Singer M., Biochim. Biophys. Acta, 1983, 735, 429CrossRefGoogle Scholar
  18. [18]
    Paternostre M. T., Roux M., Rigaud J. L., Biochem., 1988, 27, 2668CrossRefGoogle Scholar
  19. [19]
    Memoli A., Annesini M. C., Petralito S., Int. J. Pharm., 1999, 184, 227CrossRefGoogle Scholar
  20. [20]
    Annesini M. C., Memoli A., Petralito S., J. Memb. Sci., 2000, 180, 121CrossRefGoogle Scholar
  21. [21]
    Fleischman D. E., Clayton R. K., Photochem. Photobiol., 1968, 8, 287CrossRefGoogle Scholar
  22. [22]
    Matthew G. G., Jackson J. B., Biochim. Biophys. Acta, 1993, 1144, 191CrossRefGoogle Scholar
  23. [23]
    Jackson J. B., Crofts A. R., FEBS L., 1969, 4(3), 185CrossRefGoogle Scholar
  24. [24]
    Elzbieta G. G., Anyony R. C., Biochim. Biophys. Acta, 1984, 766, 322CrossRefGoogle Scholar
  25. [25]
    Petty K. M., Jackson J. B., Biochim. Biophys. Acta, 1979, 547, 463CrossRefGoogle Scholar
  26. [26]
    Holemes N. G., Hunter C. N., Robert A. N., Crofts A. R., FEBS L., 1980, 115(1), 43CrossRefGoogle Scholar
  27. [27]
    Matsuura K., Shimada K., Biochim. Biophys. Acta, 1993, 1140, 293CrossRefGoogle Scholar
  28. [28]
    Bowyer J. R., Crofts A. R., Arch. Biochem. Biophys., 1980, 202(2), 582CrossRefGoogle Scholar
  29. [29]
    Malferrari M., Malferrari D., Francia F., Galletti P., Tagliavini E., Venturoli G., Biochim. Biophys. Acta, 2015, 1848, 2898CrossRefGoogle Scholar
  30. [30]
    Assunta B. M., Bruno A. M., Methods in Enzymology, 1971, 23, 556CrossRefGoogle Scholar
  31. [31]
    Toyoshima Y., Fukutaka E., FEBS L., 1982, 150, 223CrossRefGoogle Scholar
  32. [32]
    Zhang J. P., Fujii R., Qian P., Inaba T., Mizoguchi T., Koyama Y., Onaka K., Watanabe Y., J. Phys. Chem. B, 2000, 104(15), 3683CrossRefGoogle Scholar
  33. [33]
    Yu D. Y., Huang G. H., Xu F. X., Wang M. F., Liu S., Huang F., Photosynth. Res., 2014, 120(3), 311CrossRefGoogle Scholar
  34. [34]
    Broglie R. M., Hunter C. N., Delepelaire P., Niederman R. A., Chua N. H., Clayton R. K., Proc. Natl. Acad. Sci., 1980, 77, 87CrossRefGoogle Scholar
  35. [35]
    Koepke K., Hu X., Muenke C., Schulten K., Michel H., Structure, 1996, 4, 581CrossRefGoogle Scholar
  36. [36]
    McDermott G., Prince S. M., Freer A.A., Hawthornthwaite-Lawless A. M., Papiz M. Z., Cogdell R. J., Isaacs N. W., Nature, 1995, 374, 517CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryRenmin University of ChinaBeijingP. R. China

Personalised recommendations