Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 4, pp 517–522 | Cite as

Heterostructure Ag@WO3–x Composites with High Selectivity for Breaking Azo-bond

  • Zhenxing Fang
  • Yan Chen
  • Boran Wang
  • Shihui Jiao
  • Guangsheng Pang
Article
  • 16 Downloads

Abstract

The heterostructure Ag@WO3–x(x=0.1 or 1) composites with high selectivity for breaking azo-bond were obtained by in situ reduction of Ag2WO4. The crystal structure and morphology of Ag@WO3–x were characterized by X-ray powder diffraction(XRD), scanning electron microscope(SEM) and transmission electron microscope(TEM). The residue solution of methyl orange(MO) after degradation was tested by gas chromatograph mass spectrometer (GCMS) to analyze the exact components. The results indicate that the products after degradation are N,N-dimethylaniline, N,N-dimethyl-p-phenylenediamine and sulfanilic acid. This is caused by specific breaking of azo-bond in MO. The azo-bond breaking of MO by Ag@WO3–x could occur in dark without any light illumination. Therefore, we proposed a possible mechanism for this azo-bond breaking reaction based on the reaction condition and results.

Keywords

Heterostructure In situ reduction Azo-bond 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Li Y., Lu A., Jin S., Wang C., J. Hazard. Mater., 2009, 170, 479CrossRefPubMedGoogle Scholar
  2. [2]
    Yu J., Xiong J., Cheng B., Liu S., Appl. Catal. B: Environm., 2005, 60, 211CrossRefGoogle Scholar
  3. [3]
    Velmurugan R., Swaminathan M., Research on Chemical Intermediates, 2013, 41, 1227CrossRefGoogle Scholar
  4. [4]
    Zhang P., Wang L., Zhang X., Hu J., Shao G., Nano-Micro Lett., 2014, 7, 86CrossRefGoogle Scholar
  5. [5]
    Ashkarran A. A., Mohammadi B., Appl. Surf. Sci., 2015, 342, 112CrossRefGoogle Scholar
  6. [6]
    Li Y., Wu W., Dai P., Zhang L., Sun Z., Li G., Wu M., Chen X., Chen C., RSC Adv., 2014, 4, 23831CrossRefGoogle Scholar
  7. [7]
    Abe R., Takami H., Murakami N., Ohtani B., J. Am. Chem. Soc., 2008, 130, 7780CrossRefPubMedGoogle Scholar
  8. [8]
    Zheng H., Ou J., Strano M. S., Kalantar-zadeh K., Adv. Functional Mater., 2011, 21, 2175CrossRefGoogle Scholar
  9. [9]
    Wakimoto R., Kitamura T., Ito F., Usami H., Moriwaki H., Appl. Catal. B: Environm., 2015, 166, 544CrossRefGoogle Scholar
  10. [10]
    Hameed A., Gondal M. A., Yamani Z. H., Catal. Commun., 2004, 5, 715CrossRefGoogle Scholar
  11. [11]
    Tang J., Ye J., J. Mater. Chem., 2005, 15, 4246CrossRefGoogle Scholar
  12. [12]
    Tang Y., Shao Y., Chen N., Liu X., Chen S. Q., Yao K. F., RSC Adv., 2015, 5, 34032CrossRefGoogle Scholar
  13. [13]
    Xia S., Liu F., Ni Z., Shi W., Xue J., Qian P., Appl. Catal. B: Environm., 2014, 144, 570CrossRefGoogle Scholar
  14. [14]
    Andres J., Gracia L., Gonzalez-Navarrete P., Longo V. M., Avansi W., Volanti D. P., Ferrer M. M., Lemos P. S., La Porta F. A, Hernandes A. C., Longo E., Scientific Reports, 2014, 4, 5391CrossRefPubMedPubMedCentralGoogle Scholar
  15. [15]
    Longo E., Cavalcante L. S., Volanti D. P., Gouveia A. F., Longo V. M., Varela J. A., Orlandi M. O., Andres J., Scientific Reports, 2013, 3, 1676CrossRefPubMedPubMedCentralGoogle Scholar
  16. [16]
    Samide A., Tutunaru B., Moanţă A., Ionescu C., Int. J. Electrochem. Sci., 2015, 10, 4637Google Scholar
  17. [17]
    Xi G., Ye J., Ma Q., Su N., Bai H., Wang C., J. Am. Chem. Soc., 2012, 134, 6508CrossRefPubMedGoogle Scholar
  18. [18]
    Zhu Q., Peng Y., Lin L., Fan C., Gao G., Wang R., Xu A., J. Mater. Chem. A, 2014, 2, 4429CrossRefGoogle Scholar
  19. [19]
    Tan H., Zhao Z., Niu M., Mao C., Cao D., Cheng D., Feng P., Sun Z., Nanoscale, 2014, 6, 10216CrossRefPubMedGoogle Scholar
  20. [20]
    Zhu H., Xia P., Li Y., Ho W., Yu J., Appl. Surf. Sci., 2017, 391, 175CrossRefGoogle Scholar
  21. [21]
    Weon S., Kim J., Choi W., Appl. Catal. B: Environm., 2018, 220, 1CrossRefGoogle Scholar
  22. [22]
    Fang Z., Jiao S., Kang Y., Pang G., Feng S., ChemistryOpen, 2017, 6, 261CrossRefPubMedPubMedCentralGoogle Scholar
  23. [23]
    Fang Z., Jiao S., Wang B., Yin W., Liu S., Gao R., Liu Z., Pang G., Feng S., Materials Today Energy, 2017, 6, 146CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhenxing Fang
    • 1
  • Yan Chen
    • 1
  • Boran Wang
    • 1
  • Shihui Jiao
    • 1
  • Guangsheng Pang
    • 1
  1. 1.State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of ChemistryJilin UniversityChangchunP. R. China

Personalised recommendations