Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 5, pp 736–743 | Cite as

Formation of β-Lactones by [2+2] Cycloaddition of Dichloroketene with Unreactive Carbonyl Compounds

  • Xu Dong
  • Chunxia Zhang
  • Jian Xu
  • Yue Zhang
  • Ying Zhao
  • Li Chen
Article
  • 17 Downloads

Abstract

We report a modified process that dichloroketene generated in situ from trichloroacetyl chloride and Zn powder reacts with unreactivate carbonyl groups to afford dichloro-β-lactones in moderate to good yields. Subse-quently, monochloro-β-lactones, β-lactones and β-hydroxy ester are obtained by dechlorination under different reac-tion conditions.

Keywords

Dichloroketene Unreactive carbonyl group β-Lactone [2+2] Cycloaddition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2018_8088_MOESM1_ESM.pdf (2.1 mb)
Formation of β-Lactones by [2+2] Cycloaddition of Dichloroketene with Unreactive Carbonyl Compounds

References

  1. [1]
    Evidente A., Iacobellis N. S., Surico G., Phytochemistry, 1990 29, 1491CrossRefGoogle Scholar
  2. [2]
    Thiele M., Rabe S., Hessenkemper W., Roell D., Bartsch S., Kraft F., Abraham T. E., Houtsmuller A. B., van Royen M. E., Giannis A., Ba-niahmad A., Curr. Med. Chem., 2015 22, 1156CrossRefPubMedGoogle Scholar
  3. [3]
    ElBialy S. A. A., Braun H., Tietze L. F., Eur. J. Org. Chem., 2005, 2965Google Scholar
  4. [4]
    Einhorn A., Ber. Dtsch. Chem. Ges., 1883 16, 2208CrossRefGoogle Scholar
  5. [5]
    Pommier A., Pons J. M., Synthesis, 1993, 441Google Scholar
  6. [6]
    Yang H. W., Romo D., Tetrahedron, 1999 55, 6403CrossRefGoogle Scholar
  7. [7]
    Wang Y. C., Tennyson R. L., Romo D., Heterocycles, 2004 64, 605CrossRefGoogle Scholar
  8. [8]
    Mulzer J., Bruntrup G., Chucholowski A., Angew. Chem. Int. Ed., 1979 18, 622CrossRefGoogle Scholar
  9. [9]
    Adam W., Narita N., Nishizawa Y., J. Am. Chem. Soc., 1984 106, 1843CrossRefGoogle Scholar
  10. [10]
    Lowe C., Pu Y. L., Vederas J. C., J. Org. Chem., 1992 57, 10CrossRefGoogle Scholar
  11. [11]
    Barnett W. E., Sohn W. H., J. Chem. Soc. Chem. Commun., 1972, 472Google Scholar
  12. [12]
    Danheiser R. L., Nowick J. S., J. Org. Chem., 1991 56, 1176CrossRefGoogle Scholar
  13. [13]
    Evans S. A. Jr., Gordon N. J., J. Org. Chem., 1993 58, 5295CrossRefGoogle Scholar
  14. [14]
    Arrastia I., Lecea B., Cossio F. P., Tetrahedron Lett., 1996 37, 245CrossRefGoogle Scholar
  15. [15]
    Wedler C., Ludwig R., Schick H., Pure Appl. Chem., 1997 69, 605CrossRefGoogle Scholar
  16. [16]
    Hirai K., Homma H., Mikoshiba I., Heterocycles, 1994 38, 281CrossRefGoogle Scholar
  17. [17]
    Yang H. W., Romo D., J. Org. Chem., 1997 62, 4CrossRefPubMedGoogle Scholar
  18. [18]
    Yang H. W., Zhao C., Romo D., Tetrahedron, 1997 53, 16471CrossRefGoogle Scholar
  19. [19]
    Yang H. W., Romo D., J. Org. Chem., 1998 63, 1344CrossRefGoogle Scholar
  20. [20]
    Wynberg H., Staring E. G. J., J. Am. Chem. Soc., 1982 104, 166CrossRefGoogle Scholar
  21. [21]
    Wynberg H., Staring E. G. J., J. Org. Chem., 1985 50, 1977CrossRefGoogle Scholar
  22. [22]
    Tennyson R., Romo D., J. Org. Chem., 2000 65, 7248CrossRefPubMedGoogle Scholar
  23. [23]
    Cater M. A., J. Org. Chem., 1996 61, 8006CrossRefGoogle Scholar
  24. [24]
    Tamai Y., Someya M., Fukumoto J., J. Chem. Soc., Perkin Trans. 1, 1994, 1549Google Scholar
  25. [25]
    Tamai Y., Yoshiwara H., Someya M., J. Chem. Soc. Chem. Commun., 1994, 2281Google Scholar
  26. [26]
    Dymock B. W., Kocienski P. J., Pons J. M., J. Chem. Soc. Chem. Commun., 1996, 1053Google Scholar
  27. [27]
    Romo D., Harrision P. H., Bioorg., Med. Chem., 1998 6, 1255CrossRefGoogle Scholar
  28. [28]
    Zipp G. G., Nelson S. G., Org. Lett., 2002 4, 1823CrossRefPubMedGoogle Scholar
  29. [29]
    Nelson S. G., Kim B. K., J. Am. Chem. Soc., 2000 122, 9318CrossRefGoogle Scholar
  30. [30]
    Nelson S. G., Wan Z. H., Tetrahedron Lett., 1999 40, 6541CrossRefGoogle Scholar
  31. [31]
    Evans D. A., Janey J. M., Org. Lett., 2001 3, 2125CrossRefPubMedGoogle Scholar
  32. [32]
    Arjona O., Pradilla R. F., Tetrahedron Lett., 1986 27, 5505CrossRefGoogle Scholar
  33. [33]
    Arjona O., Pradilla R. F., Tetrahedron, 1988 44, 1235CrossRefGoogle Scholar
  34. [34]
    Palorno C., Miranda J. l., Cuevas C., Odriozola J. M., J. Chem. Soc. Chem. Commun., 1995, 1735Google Scholar
  35. [35]
    Hyatt J. A., Raynolds P. W., Org. React., 1994 45, 159Google Scholar
  36. [36]
    Brady W. T., Patel A. D., J. Heterocyclic Chem., 1971 8, 739CrossRefGoogle Scholar
  37. [37]
    Snider J. R., Entrekin J. T., Snowden T. S., Dolliver D., Synthe-sis(Germany), 2013 45, 1899CrossRefGoogle Scholar
  38. [38]
    Mulzer J., Pointner A., Tetrahedron Lett., 1995 36, 3679CrossRefGoogle Scholar
  39. [39]
    Yokoyama R., Ito S., Monita. N., Watanabe M., Harade N., Kabuto C., Morita N., J. Chem. Soc., Perkin Trans 1, 2001, 2257Google Scholar
  40. [40]
    Brown D. G., Bernstein P. R., Groblewski T., J. Med. Chem., 2014 57, 733CrossRefPubMedGoogle Scholar
  41. [41]
    Matsuo J., Kawano M., Ishibashi H., Org. Lett., 2010 12, 3960CrossRefPubMedGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xu Dong
    • 1
  • Chunxia Zhang
    • 1
  • Jian Xu
    • 1
  • Yue Zhang
    • 1
  • Ying Zhao
    • 1
  • Li Chen
    • 1
  1. 1.State Key Laboratory and Institute of Elemento-Organic Chemistry, College of ChemistryNankai UniversityTianjinP. R. China

Personalised recommendations