Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 5, pp 744–750 | Cite as

Synthesis and Bioactivity Evaluation of Novel N-Pyridylpyrazolemethanamine Derivatives

  • Xuewen Hua
  • Wei Wei
  • Liangliang Zhu
  • Yunyun Zhou
Article
  • 49 Downloads

Abstract

To further explore the structure-activity relationship(SAR) of amide bridge moeity of anthranilic diamides derivatives, a series of N-pyridylpyrazole derivatives was designed, synthesized and their biological activities were evaluated. The chemical structures of novel target compounds were confirmed by 1H nuclear magnetic resonance (NMR), 13C NMR and elemental analyses(EA). Bioassay results of insecticidal activity demonstrated that the target compound 6h displayed 70% lethality rate against oriental armyworms at 200 mg/L. Moreover, most compounds displayed moderate to excellent antifungicidal activities against Fusarium oxysporum f. sp. cucumerinum, Cercospora arachidicola Hori, Botryosphaeria dothidea, Alternaria solani, Gibberella zeae and Phytophthora capsici at 50 mg/L. In particular, compound 6e showed 61.5% and 92.3% inhibition rate against Cercospora arachidicola Hori and Botryosphaeria dothidea, which was superior to the commercial positive control Chlorothalonil. These results will provide a potential clue for exploring novel high-effective agrochemicals.

Keywords

Anthranilic diamide Biological activity Antifungal agent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Marengo J. J., Hidalgo C., Bull R., Biophysical Journal, 1998 74(3), 1263CrossRefPubMedPubMedCentralGoogle Scholar
  2. [2]
    Isaacs A. K., Qi S., Sarpong R., Casida J. E., Chemical Research in Toxicology, 2012 25(8), 1571CrossRefPubMedPubMedCentralGoogle Scholar
  3. [3]
    Casida J. E., Chemical Research in Toxicology, 2015 28(4), 560CrossRefPubMedGoogle Scholar
  4. [4]
    Gnamm C., Jeanguenat A., Dutton A. C., Grimm C., Kloer D. P., Crossthwaite A. J., Bioorganic & Medicinal Chemistry Letters, 2012 22(11), 3800CrossRefGoogle Scholar
  5. [5]
    Lahm G. P., Stevenson T. M., Selby T. P., Freudenberger J. H., Cordova D., Flexner L., Bellin C. A., Dubas C. M., Smith B. K., Hughes K. A., Hollingshaus J. G., Clark C. E., Benner E. A., Bioorganic & Medicinal Chemistry Letters, 2007 17(22), 6274CrossRefGoogle Scholar
  6. [6]
    Lahm G. P., Selby T. P., Freudenberger J. H., Stevenson T. M., Myers B. J., Seburyamo G., Smith B. K., Flexner L., Clark C. E., Cordova D., Bioorganic & Medicinal Chemistry Letters, 2005 15(22), 4898CrossRefGoogle Scholar
  7. [7]
    Selby T. P., Lahm G. P., Stevenson T. M., Pest Management Science, 2017 73(4), 658CrossRefPubMedGoogle Scholar
  8. [8]
    Selby T. P., Lahm G. P., Stevenson T. M., Hughes K. A., Cordova D., Annan I. B., Barry J. D., Benner E. A., Currie M. J., Pahutski T. F., Bioorganic & Medicinal Chemistry Letters, 2013 23(23), 6341CrossRefGoogle Scholar
  9. [9]
    Lahm G. P., Cordova D., Barry J. D., Bioorganic & Medicinal Chemistry, 2009 17(12), 4127CrossRefGoogle Scholar
  10. [10]
    Li Y., Mao M., Li Y., Xiong L., Li Z., Xu J., Physiological Entomology, 2011 36(3), 230CrossRefGoogle Scholar
  11. [11]
    Forgash A. J., Pesticide Biochemistry and Physiology, 1984 22(2), 178CrossRefGoogle Scholar
  12. [12]
    Roditakis E., Steinbach D., Moritz G., Vasakis E., Stavrakaki M., Ilias A., García-Vidal L., Martínez-Aguirre M. D. R., Bielza P., Morou E., Silva J. E., Silva W. M., Siqueira H. A. A., Iqbal S., Troczka B. J., Williamson M. S., Bass C., Tsagkarakou A., Vontas J., Nauen R., Insect Biochemistry and Molecular Biology, 2017 80, 11CrossRefPubMedGoogle Scholar
  13. [13]
    Wu J., Song B. A., Hu D. Y., Yue M., Yang S., Pest Management Science, 2012 68(5), 801CrossRefPubMedGoogle Scholar
  14. [14]
    Chen Y. B., Li J. L., Shao X. S., Xu X. Y., Li Z., Chinese Chemical Letters, 2013 24(8), 673CrossRefGoogle Scholar
  15. [15]
    Mao M., Li Y., Liu Q., Zhou Y., Zhang X., Xiong L., Li Y., Li Z., Bioorganic & Medicinal Chemistry Letters, 2013 23(1), 42CrossRefGoogle Scholar
  16. [16]
    Zhou Y., Feng Q., Di F., Liu Q., Wang D., Chen Y., Xiong L., Song H., Li Y., Li Z., Bioorganic & Medicinal Chemistry, 2013 21(17), 4968CrossRefGoogle Scholar
  17. [17]
    Hua X., Mao W., Fan Z., Ji X., Li F., Zong G., Song H., Li J., Zhou L., Zhou L., Liang X., Wang G., Chen X., Australian Journal of Chemistry, 2014 67(10), 1491CrossRefGoogle Scholar
  18. [18]
    Mao M. Z., Li Y. X., Zhou Y. Y., Zhang X. L., Liu Q. X., Di F. J., Song H. B., Xiong L. X., Li Y. Q., Li Z. M., Journal of Agricultural and Food Chemistry, 2014 62(7), 1536CrossRefPubMedGoogle Scholar
  19. [19]
    Liu Q., Zhu R., Gao S., Ma S. H., Tang H. J., Yang J. J., Diao Y. M., Wang H. L., Zhu H. J., Pest Management Science, 2017 73(5), 917CrossRefPubMedGoogle Scholar
  20. [20]
    Zhao Y., Li Y., Xiong L., Wang H., Li Z., Chinese Journal of Chemistry, 2012 30(8), 1748CrossRefGoogle Scholar
  21. [21]
    Kon’Kov K., Bormasheva M., Russian Journal of Organic Chemistry, 2014 50(11), 1636CrossRefGoogle Scholar
  22. [22]
    Zhang X., Li Y., Ma J., Zhu H., Wang B., Mao M., Xiong L., Li Y., Li Z., Bioorganic & Medicinal Chemistry, 2014 22(1), 186CrossRefGoogle Scholar
  23. [23]
    Liu J. B., Li Y. X., Zhang X. L., Hua X. W., Wu C. C., Wei W., Wan Y. Y., Cheng D. D., Xiong L. X., Yang N., Song H. B., Li Z. M., Journal of Agricultural and Food Chemistry, 2016 64(18), 3697CrossRefPubMedGoogle Scholar
  24. [24]
    Wang X. J., Tan J., Grozinger K., Betageri R., Kirrane T., Proudfoot J. R., Tetrahedron Letters, 2000 41(28), 5321CrossRefGoogle Scholar
  25. [25]
    Kang S., Song B., Wu J., He M., Hu D., Jin L., Zeng S., Xue W., Yang S., European Journal of Medicinal Chemistry, 2013 67, 14CrossRefPubMedGoogle Scholar
  26. [26]
    Wang B. L., Zhu H. W., Ma Y., Xiong L. X., Li Y. Q., Zhao Y., Zhang J. F., Chen Y. W., Zhou S., Li Z. M., Journal of Agricultural and Food Chemistry, 2013 61(23), 5483CrossRefPubMedGoogle Scholar
  27. [27]
    Zhang J. F., Xu J. Y., Wang B. L., Li Y. X., Xiong L. X., Li Y. Q., Ma Y., Li Z. M., Journal of Agricultural and Food Chemistry, 2012 60(31), 7565CrossRefPubMedGoogle Scholar
  28. [28]
    Liu C., Zhang J., Zhou Y., Wang B., Xiong L., Li Z., Chem. Res. Chinese Universities, 2014 30(2), 228CrossRefGoogle Scholar
  29. [29]
    Abbott W. S., Journal of Economic Entomology, 1925 18(2), 265CrossRefGoogle Scholar
  30. [30]
    Hua X., Mao W., Fan Z., Ji X., Li F., Zong G., Song H., Tatiana K., Morzherin Y. Y., Belskaya N. P., Bakulev V. A., Journal of Heterocyclic Chemistry, 2016 53(3), 865CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xuewen Hua
    • 1
  • Wei Wei
    • 3
  • Liangliang Zhu
    • 2
  • Yunyun Zhou
    • 2
  1. 1.College of AgronomyLiaocheng UniversityLiaochengP. R. China
  2. 2.State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular ScienceFudan UniversityShanghaiP. R. China
  3. 3.Wuxi AppTec(Tianjin) Co., Ltd.TianjinP. R. China

Personalised recommendations