Chemical Research in Chinese Universities

, Volume 34, Issue 3, pp 434–439 | Cite as

3D-Graphene/Boron Nitride-stacking Material: a Fundamental van der Waals Heterostructure

  • Peng Fu
  • Ran JiaEmail author
  • Jian Wang
  • Roberts I. Eglitis
  • Hongxing ZhangEmail author


The 3D periodic graphene/h-BN(G/BN) heterostuctures were studied. The stacking forms between the graphene and h-BN layers were discussed. The varieties of the geometric and electronic configurations at the inter-face between graphene and h-BN layers were also reported. The metal-semiconductor transform of the G/BN material can be achieved by adjusting the stacking form of the h-BN layers or changing the proportion of graphene layers in the unit cell. An electrostatic potential well was found at the interface. Due to the potential well and the only dispersion correlation at the interface, the dielectric constant ε zz in vertical direction was independent on the variety of the thickness or the proportion of the compositions in an unit cell.


van der Waals heterostructure Graphene h-BN Density functional theory Electronic property 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2018_8075_MOESM1_ESM.pdf (1 mb)
3D-Graphene/Boron Nitride-Stacking Material: A Fundamental van der Waals Heterostructures


  1. [1]
    Novoselov K. S., Morozov S. V., Jiang D., Science 2004, 306(5696), 666CrossRefGoogle Scholar
  2. [2]
    Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Katsnelson M. I., Grigorieva I. V., Dubonos S. V., Firsov A. A., Nature 2005, 438(7065), 197CrossRefGoogle Scholar
  3. [3]
    Zhang Y., Tan Y. W., Stormer H. L., Kim P., Nature 2005, 438(7065), 201CrossRefPubMedGoogle Scholar
  4. [4]
    Berger C., Song Z. M., Li X. B., Wu X. S. Brown N, Naud C., Mayou D., Li T. B., Hass J., Marchenkov A. N., Conrad E. H., First P. N., de Heer W. A., Science 2006, 312(5777), 1191CrossRefPubMedGoogle Scholar
  5. [5]
    Corso M., Auwarter W., Muntwiler M., Tamai A., Greber T., Oster-walder J., Science 2004, 303(5655), 217CrossRefPubMedGoogle Scholar
  6. [6]
    Yoffe A. D., Adv. Phys. 2002, 51(2), 799CrossRefGoogle Scholar
  7. [7]
    Liu H., Neal A. T., Zhu Z., Luo Z., Xu X., Tománek D., Ye P. D., ACS Nano, 2014, 8(4), 4033CrossRefPubMedGoogle Scholar
  8. [8]
    Li L. F., Lu S. Z., Pan J. B., Qin Z. H., Wang Y. Q., Wang Y. L., Cao G. Y., Du S. X., Gao H. J., Adv. Mater. 2014, 26(28), 4820CrossRefPubMedGoogle Scholar
  9. [9]
    Geim A. K., Grigorieva I. V., Nature 2013, 499(7459), 419CrossRefPubMedGoogle Scholar
  10. [10]
    Novoselov K. S., Mishchenko A., Carvalho A., Castro Neto A. H., Science 2016, 353(6298), aac9439PubMedGoogle Scholar
  11. [11]
    Lee C. H., Lee G. H., van der Zande A. M., Chen W., Li Y., Han M., Cui X., Arefe G., Nuckolls C., Heinz T. F., Guo J., Hone J., Kim P., Nat. Nanothech. 2014, 9(9), 676CrossRefGoogle Scholar
  12. [12]
    Giovannetti G., Khomyakov P. A., Brocks G., Kelly P. J., van den Brink J., Phys. Rev. B 2007, 76(7), 073103CrossRefGoogle Scholar
  13. [13]
    Slawińska J., Zasada I., Klusek Z., Phys. Rev. B 2010, 81(15), 155433CrossRefGoogle Scholar
  14. [14]
    Balu R., Zhong X., Pandey R., Karna S. P., App. Phys. Lett. 2012, 100(5), 052104CrossRefGoogle Scholar
  15. [15]
    Kim D., Hashmi Q., Hwang C., Hong J., Surf. Sci. 2013, 610(4), 27CrossRefGoogle Scholar
  16. [16]
    Ju L., Velasco J. Jr., Huang E., Kahn S., Nosiglia C., Tsai H. Z., Yang W., Taniguchi T., Watanabe K., Zhang Y., Zhang G., Crommie M., Zettl A., Wang F., Nat. Nanotech. 2014, 9(5), 348CrossRefGoogle Scholar
  17. [17]
    Becke A. D., Phys. Rev. A 1988, 38(38), 3098CrossRefGoogle Scholar
  18. [18]
    Perdew J. P., Chevary J. A., Vosko S. H., Jackson K. A., Pederson M. R., Singh D. J., Fiolhais C., Phys. Rev. B 1992, 46(11), 6671CrossRefGoogle Scholar
  19. [19]
    Dovesi R., Orlando R., Erba A., Zicovich-Wilson C. M., Civalleri B., Casassa S., Maschio L., Ferrabone M., De La Pierre M., D’Arco P., Noel Y., Causa M., Rerat M., Kirtman B., Int. J. Quantum Chem., 2014, 114(19), 1287CrossRefGoogle Scholar
  20. [20]
    Peintinger M. F., Oliveira D. V., Bredow T., J. Comput. Chem., 2013, 34(6), 451CrossRefPubMedGoogle Scholar
  21. [21]
    Grimme S., J. Comput. Chem., 2006, 27(15), 1787CrossRefPubMedGoogle Scholar
  22. [22]
    Anthony J. W., Bideaux R. A., Bladh K. W., Nichols M. C., Hand-book of Mineralogy: Volume I: Elements, Sulfides, Sulfosalts, Miner-al Data Publishing, Tucson, Arizona, 1990Google Scholar
  23. [23]
    Kern G., Kresse G., Hafner J., Phys. Rev. B 1999, 59(13), 8551CrossRefGoogle Scholar
  24. [24]
    Orlando R., Lacivita V., Bast R., Ruud K., J. Chem. Phys., 2010, 132(24), 244106CrossRefPubMedGoogle Scholar
  25. [25]
    Constantinescu G., Kuc A., Heine T., Phys. Rev. Lett. 2013, 111(3), 036104CrossRefPubMedGoogle Scholar
  26. [26]
    Warner J. G., Rümmeli M. H., Bachmatiuk A., Büchner B., ACS Na-no, 2010, 4(3), 1299CrossRefGoogle Scholar
  27. [27]
    Marom N., Bernstein J., Garel J., Tkatchenko A., Joselevich E., Kro-nik L., Hod O., Phys. Rev. Lett. 2010, 105(4), 046801CrossRefPubMedGoogle Scholar
  28. [28]
    Golberg D., Bando Y., Huang Y., Terao T., Mitome M., Tang C., Zhi C., ACS Nano, 2010, 4(6), 2979CrossRefPubMedGoogle Scholar
  29. [29]
    Ferrero M., Rérat M., Kirtman B., Dovesi R., J. Chem. Phys., 2008, 129(24), 244110CrossRefPubMedGoogle Scholar
  30. [30]
    Kim K. K., Hsu A., Jia X., Kim S. M., Shi Y., Dresselhaus M., Pala-cios T., Kong J., ACS Nano, 2012, 6(10), 8583CrossRefPubMedGoogle Scholar
  31. [31]
    Yu E. K., Stewart D. A., Tiwari S., Phys. Rev. B 2008, 77(19), 195406CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Theoretical ChemistryJilin UniversityChangchunP. R. China
  2. 2.Institute of Solid State PhysicsUniversity of LatviaRigaLatvia

Personalised recommendations