Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 5, pp 711–718 | Cite as

Formation of Oxygen Vacancies on the {010} Facets of BiOCl and Visible Light Activity for Degradation of Ciprofloxacin

  • Xiaoxing Zeng
  • Xiaofeng Gong
  • Yiqun Wan
  • Ruyang He
  • Zhaodi Xu
Article
  • 32 Downloads

Abstract

BiOCl nanosheets with oxygen vacancies on the exposed {010} facets were assistant-synthesized by triethanolamine(TEOA) via hydrothermal method. We explored the surface properties, crystal structure, morphology and optical absorption ability of the prepared samples via various characterization technologies. The results indicate that the morphologies and microstructures of the obtained samples depend on the amount of TEOA in the synthesis. The addition of TEOA induces the production of oxygen vacancy on the surface of the samples. Therefore, the synthesized samples with TEOA-assistance hold higher photoactivity for the degradation of colorless antibiotic agent Ciprofloxacin(CIP) under visible light(λ⩾420 nm). The obtained sample upon the addition of 20 mL of TEOA exhibits the highest photocatalytic performance, which is nearly 14 times as high as that of the sample prepared without TEOA and twice as high as that of the prepared samples with NaOH or NH3·H2O. The possible degradation mechanism was discussed on the basis of the experiment results.

Keywords

BiOCl Nanosheet Exposed facet Ciprofloxacin Photocatalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2018_8035_MOESM1_ESM.pdf (365 kb)
Formation of oxygen vacancies on the {010} facets of BiOCl and visible light activity for degradation of ciprofloxaci

References

  1. [1]
    Burda C., Chen X. B., Narayanan R., El-Sayed M. A., Chem. Rev. 2005, 105(4), 1025CrossRefPubMedGoogle Scholar
  2. [2]
    Peng L., Hu L. F., Fang X. S., Adv. Funct. Mater. 2014, 24(18), 2591CrossRefGoogle Scholar
  3. [3]
    Gu Y., Xu Z. D., Guo L., Wan Y. Q., Cryst. Eng. Comm. 2014, 16(48), 10997CrossRefGoogle Scholar
  4. [4]
    Han S. C., Hu L. F., Gao N., Al-Ghamdi A. A., Fang X. S., Adv. Funct. Mater. 2014, 24(24), 3725CrossRefGoogle Scholar
  5. [5]
    Xu Z. D., Li Y. X., Peng S. Q., Lu G. X., Li S. B., Cryst. Eng. Comm. 2011, 13(14), 4770CrossRefGoogle Scholar
  6. [6]
    Wan Y. Q., Wang X. F., Gu Y., Guo L., Xu Z. D., Appl. Surf. Sci. 2016, 366, 59CrossRefGoogle Scholar
  7. [7]
    Zhang H., Cai J. M., Wang Y. T., Wu M. Q., Meng M., Tian Y., Li X. G., Zhang J., Zheng L. R., Jiang Z., Appl. Catal. B: Environ. 2018, 220, 126CrossRefGoogle Scholar
  8. [8]
    Zhou X. X., Qu F. D., Zhang B. X., Jiang C. J., Yang M. H., Mater. Lett. 2017, 209, 618CrossRefGoogle Scholar
  9. [9]
    Feng J., Wang Y. T., Zou L. Y., Li B. W., He X. F., Liu S. N., Chen T. T., Fan Z. J., Ren Y. M., Lu Y. Z., Chem. Res. Chinese Universities 2015, 31(3), 439CrossRefGoogle Scholar
  10. [10]
    Cui S., Li X. S., Li Y. J., Zhao H. X., Wang Y. Y., Li N., Li X. T., Li G. D., Chem. Res. Chinese Universities 2017, 33(3), 436CrossRefGoogle Scholar
  11. [11]
    Zhang K. L., Liu C. M., Huang F. Q., Zheng C., Wang W. D., Appl. Catal. B: Environ., 2006, 68(3/4), 125CrossRefGoogle Scholar
  12. [12]
    Yang H. G., Sun C. H., Qiao S. Z., Zou J., Liu G., Smith S. C., Cheng H. M., Lu G. Q., Nature 2008, 453(7195), 638CrossRefPubMedGoogle Scholar
  13. [13]
    Han X. G., Kuang Q., Jin M. S., Xie Z. X., Zheng L. S., J. Am. Chem. Soc., 2009, 131(9), 3152CrossRefPubMedGoogle Scholar
  14. [14]
    Liu M., Piao L. Y., Zhao L., Ju S. T., Yan Z. J., He T., Zhou C. L., Wang W. J., Chem. Commun. 2010, 46(10), 1664CrossRefGoogle Scholar
  15. [15]
    Chen J. W., Jiang H., Jin W. L., Shi C. K., Appl. Catal. B: Environ. 2016, 160, 698CrossRefGoogle Scholar
  16. [16]
    Xiao F., Jiang G. Q., Chen J. Y., Jiang Z. L., Liu X. Z., Osaka A., Ma X. C., J. Mater. Sci., 2018, 53(1), 285CrossRefGoogle Scholar
  17. [17]
    Liu J. C., Yu S. Y., Zhu W. Y., Yan X. L., Appl. Catal. A: Gen. 2015, 500, 30CrossRefGoogle Scholar
  18. [18]
    Yang Z. M., Jiang Y. H., Yu Q. H., Ding Y. H., Jiang Y., Yin J. R., Zhang P., J. Mater. Sci., 2017, 52(23), 13586CrossRefGoogle Scholar
  19. [19]
    Wei R. J., Zhou X. L., Zhou T. F., Hu J. C., Ho J. C., J. Phys. Chem. C, 2017, 121(35), 19002CrossRefGoogle Scholar
  20. [20]
    Yamazoe S., Koyasu K., Tsukuda T., Accounts Chem. Res. 2014, 47(3), 816CrossRefGoogle Scholar
  21. [21]
    Zang C. J., Zhang X. S., Hu S. Y., Chen F., Appl. Catal. B: Environ. 2017, 216, 106CrossRefGoogle Scholar
  22. [22]
    Yu J. C. C., Nguyen V. H., Lasek J., Wu J. C. S., Appl. Catal. B: Environ. 2017, 219, 391CrossRefGoogle Scholar
  23. [23]
    Ye L. Q., Zan L., Tian L. H., Peng T. Y., Zhang J. J., Chem. Commun. 2011, 47(24), 6951CrossRefGoogle Scholar
  24. [24]
    Truong Q. D., Hoa H. T., Le T. S., J. Colloid. Interf. Sci., 2017, 504, 223CrossRefGoogle Scholar
  25. [25]
    Peng F. P., Zhou Q., Lu C. H., Ni Y. R., Kou J. H., Xu Z. Z., Appl. Surf. Sci. 2017, 394, 115CrossRefGoogle Scholar
  26. [26]
    Chen S. L., Li D., Liu Y. X., Huang W. X., J. Catal., 2016, 341, 126CrossRefGoogle Scholar
  27. [27]
    Sang W. J., Zhang G., Lan H. C., An X. Q., Liu H. J., Electrochim. Acta 2017, 231, 429CrossRefGoogle Scholar
  28. [28]
    Zhao K., Zhang L. Z., Wang J. J., Li Q. X., He W. W., Yin J. J., J. Am. Chem. Soc., 2013, 135(42), 15750CrossRefPubMedGoogle Scholar
  29. [29]
    Yaremchenko A. A., Populoh S., Patricio S. G., Macias J., Thiel P., Fagg D. P., Weidenkaff A., Frade J. R., Kovalevsky A. V., Chem. Mater. 2015, 27(14), 4995CrossRefGoogle Scholar
  30. [30]
    Liu M., Li H. M., Wang W. J., Catal. Today 2016, 264, 236CrossRefGoogle Scholar
  31. [31]
    Pan X. Y., Yang M. Q., Fu X. Z., Zhang N., Xu Y. J., Nanoscale 2013, 5(9), 3601CrossRefPubMedGoogle Scholar
  32. [32]
    Wang Y., Wang B. J., Xu Y., Fang M., Wu Z. Y., Zhu W. J., Hong J. H., Li C., J. Chin. Chem. Soc., 2017, 64(2), 188CrossRefGoogle Scholar
  33. [33]
    Bachman R. E., Whitmire K. H., Thurston J. H., Gulea A., Stavila O., Stavila V., Inorg. Chim. 2003, 346, 249CrossRefGoogle Scholar
  34. [34]
    Jiang J., Zhao K., Xiao X. Y., Zhang L. Z., J. Am. Chem. Soc., 2012, 134(10), 4473CrossRefPubMedGoogle Scholar
  35. [35]
    Li J., Zhang L. Z., Li Y. J., Yu Y., Nanoscale 2014, 6(1), 167CrossRefPubMedGoogle Scholar
  36. [36]
    Hancock R. D., Cukrowski I., Baloyi, J., Mashishi J., J. Chem. Soc. Dalton, 1993, (19), 2895CrossRefGoogle Scholar
  37. [37]
    Poppl A., Volkel G., Esr P., Phys. Status Solidi A 1991, 125(2), 571CrossRefGoogle Scholar
  38. [38]
    Batzill M., Morales E. H., Diebold U., Chem. Phys., 2007, 339(1–3), 36CrossRefGoogle Scholar
  39. [39]
    Rath C., Mohanty P., Pandey A. C., Mishra N. C., J. Phys. D: Appl. Phys., 2009, 42(20), 205101CrossRefGoogle Scholar
  40. [40]
    Park S. M., Ikegami T., Ebihara K., Thin Solid Films, 2006, 513(1/2), 90CrossRefGoogle Scholar
  41. [41]
    Cui N. Y., Brown N. M. D., McKinley A., Appl. Surf. Sci., 2000, 158(1/2), 104CrossRefGoogle Scholar
  42. [42]
    Wang J. P., Wang Z. Y., Huang B. B., Ma Y. D., Liu Y. Y., Qin X. Y., Zhang X. Y., Dai Y., ACS Appl. Mater. Inter., 2012, 4(8), 4024CrossRefGoogle Scholar
  43. [43]
    Kwo J., Wertheim G. K., Gurvitch M., Buchanan D. N. E., Appl. Phys. Lett. 1982, 40(8), 675CrossRefGoogle Scholar
  44. [44]
    Tan S. J., Ji Y. F., Zhao Y., Zhao A. D., Wang B., Yang J. L., Hou J. G., J. Am. Chem. Soc., 2011, 133(6), 2002CrossRefPubMedGoogle Scholar
  45. [45]
    Li H., Li. J., Ai Z. H., Jia F. L., Zhang L. Z., Angew. Chem. Int. Ed. 2017, 57(1), 17Google Scholar
  46. [46]
    Serpone N., J. Phys. Chem. B, 2006, 110(48), 24287CrossRefPubMedGoogle Scholar
  47. [47]
    Nagaveni K., Hegde M. S., Madras G., J. Phys. Chem. B, 2004, 108(52), 20204CrossRefGoogle Scholar
  48. [48]
    Li Y. X., Hu Y. F., Peng S. Q., Lu G. X., Li S. B., J. Phys. Chem. C, 2009, 113(21), 9352CrossRefGoogle Scholar
  49. [49]
    Fan H. M., Jiang T. F., Li H. Y., Wang D. J., Wang L. L., Zhai J. L., He D. Q., Wang P., Xie T. F., J. Phys. Chem. C, 2012, 116(3), 2425CrossRefGoogle Scholar
  50. [50]
    Zeng X. X., Wan Y. Q., Gong. X. F., Xu Z. D., RSC Adv., 2017, 7, 36269CrossRefGoogle Scholar
  51. [51]
    Bendjabeur S., Zouaghi R., Kaabeche O. N. H., Sehili T., Int. J. Chem. React. Eng., 2017, 15(4), 0206Google Scholar
  52. [52]
    Khakpash N., Simchi A., Jafari T., J. Mater. Sci.: Mater. El., 2012, 23(3), 659Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaoxing Zeng
    • 1
    • 2
  • Xiaofeng Gong
    • 1
  • Yiqun Wan
    • 3
  • Ruyang He
    • 4
  • Zhaodi Xu
    • 3
  1. 1.School of Resource Environmental and Chemical EngineeringNanchang UniversityNanchangP. R. China
  2. 2.Institute of PhotovoltaicsNanchang UniversityNanchangP. R. China
  3. 3.Center of Analysis and TestingNanchang UniversityNanchangP. R. China
  4. 4.Institute of ChemistryNanchang UniversityNanchangP. R. China

Personalised recommendations