Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 4, pp 616–621 | Cite as

A Simple, Low-cost Method to Fabricate Drag-reducing Coatings on a Macroscopic Model Ship

  • Zhipeng Wang
  • Songsong Zhang
  • Shan Gao
  • Xiao Ouyang
  • Jie Li
  • Rui Li
  • Hao Wei
  • Zhijun Shuai
  • Wanyou Li
  • Shanshan Lyu
Article
  • 23 Downloads

Abstract

A low-cost method was used to fabricate superhydrophobic coatings on a macroscopic model ship and the drag-reducing effect was investigated at both low and high speed. Hierarchical structures of the superhydrophobic copper coatings were characterized by means of scanning electron microscopy(SEM) and X-ray diffraction(XRD). Drag coefficient tests on surfaces with different wettability(superhydrophilic, hydrophilic, hydrophobic and superhydrophobic surfaces) showed that the as-prepared superhydrophobic surface exhibited a high remarkable drag reduction of 81% at a low speed of 1 mm/s. In the drag-reducing tests with model ship, the superhydrophobic coatings also exhibited around 16% drag reduction at a velocity of 0.3 m/s.

Keywords

Low-cost superhydrophobic coating Wettability Water adhesive force Drag reduction Drag coefficient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Kramer M. O., J. Am. Soc. Nav. Eng., 1960, 72, 25Google Scholar
  2. [2]
    Virk P. S., AIChE Journal, 1975, 21, 625CrossRefGoogle Scholar
  3. [3]
    Anshuman R., Alexander M., Wim V. S., Phys. Rev. Lett., 2006, 97, 234501CrossRefGoogle Scholar
  4. [4]
    Ferhat H., Sylvain G., Int. J. Eng. Sci. Tech., 2010, 2, 6876Google Scholar
  5. [5]
    Mohsenipour A. A., Pal R., Ind. Eng. Chem. Res., 2013, 52, 1291CrossRefGoogle Scholar
  6. [6]
    Bixler G. D., Bhushan B., J. Colloid Interface Sci., 2013, 393, 384CrossRefGoogle Scholar
  7. [7]
    García-Mayoral R., Jiménez J., Phil. Trans. R. Soc. A, 2011, 369, 1412CrossRefGoogle Scholar
  8. [8]
    Xu S., Rempfer D., Lumley J. T., J. Fluid Mech., 2003, 478, 11CrossRefGoogle Scholar
  9. [9]
    Favier J., Dauptain A., Basso D., Bottaro A., J. Fluid Mech., 2009, 627, 451CrossRefGoogle Scholar
  10. [10]
    Victor S. L., Anna P., Itamar P., Vasil T., Phys. Rev. Lett., 2005, 94, 174502CrossRefGoogle Scholar
  11. [11]
    Ceccio S. L., Annu. Rev. Fluid Mech., 2010, 42, 183CrossRefGoogle Scholar
  12. [12]
    Jagdish B. N., Brandon T. Z. X., Kwee T. J., Dev A. K., J. Ship Res., 2014, 58, 30CrossRefGoogle Scholar
  13. [13]
    Vakarelski I. U., Chanb D. Y. C., Thoroddsen S. T., Soft Matter, 2014, 10, 5662CrossRefGoogle Scholar
  14. [14]
    McCormick M. E., Bhattacharyya R., Nav. Eng. J., 1973, 85, 406CrossRefGoogle Scholar
  15. [15]
    Cottin-Bizonne C., Barrat J. L., Bocquet L., Charlaix E., Nat. Mater., 2003, 2, 237CrossRefGoogle Scholar
  16. [16]
    Olin P., Lindström S. B., Pettersson T., Wåberg L., Langmuir, 2013, 29, 9079CrossRefGoogle Scholar
  17. [17]
    McHale G., Flynn M. R., Newton M. I., Soft Matter, 2011 7, 10100CrossRefGoogle Scholar
  18. [18]
    Rothstein J. P., Annu. Rev. Fluid Mech., 2010, 42, 89CrossRefGoogle Scholar
  19. [19]
    Mohamed A. S., Hooman V. T., Mohamed G., Phys. Fluids, 2011, 23, 012001CrossRefGoogle Scholar
  20. [20]
    Fukagata K., Kasagi N. A., Phys. Fluids, 2006, 18, 051703CrossRefGoogle Scholar
  21. [21]
    Watanabe K., Udagawa Y., Udagawa H., J. Fluid Mech., 1999, 381, 225CrossRefGoogle Scholar
  22. [22]
    Bixler G. D., Bhushan B., Nanoscale, 2014, 6, 76CrossRefGoogle Scholar
  23. [23]
    Lee C., Kim C. J., Phys. Rev. Lett., 2011, 106, 014502CrossRefGoogle Scholar
  24. [24]
    Wu Y., Liu Z., Liang Y., Pei X., Zhou F., Xue Q., Soft Matter, 2014, 10, 5318CrossRefGoogle Scholar
  25. [25]
    Ou J., Rothstein J. P., Phys. Fluids, 2005, 17, 103606CrossRefGoogle Scholar
  26. [26]
    Truesdell R., Mammoli A., Vorobieff P., Swol F. V., Brinker C. J., Phys. Rev. Lett., 2006, 97, 044504CrossRefGoogle Scholar
  27. [27]
    Shi F., Niu J., Liu J., Liu F., Wang Z., Feng X., Zhang X., Adv. Mater., 2007, 19, 2257CrossRefGoogle Scholar
  28. [28]
    Dong H., Cheng M., Zhang Y., Wei H., Shi F., J. Mater. Chem. A, 2013, 1, 5886CrossRefGoogle Scholar
  29. [29]
    Zhang S., Ouyang X., Li J., Gao S., Han S., Liu L., Wei H., Lang-muir, 2015, 31, 587CrossRefGoogle Scholar
  30. [30]
    Kim J. G., Choi H. J., Park K. C., Cohen R. E., McKinley G. H., Barbastathis G., Small, 2014, 10, 2487CrossRefGoogle Scholar
  31. [31]
    Liu T., Kim C. J., Science, 2014, 346, 1096CrossRefGoogle Scholar
  32. [32]
    Zhang X., Shi F., Yu X., Liu H., Fu Y., Wang Z., Jiang L., Li X., J. Am. Chem. Soc., 2004, 126, 3064CrossRefGoogle Scholar
  33. [33]
    Lai Y., Lin C., Huang J., Zhuang H., Sun L., Nguyen T., Langmuir, 2008, 24, 3867CrossRefGoogle Scholar
  34. [34]
    Xiao M., Jiang C., Shi F., NPG Asia Mater., 2014, 6, e128CrossRefGoogle Scholar
  35. [35]
    Song M., Cheng M., Ju G., Zhang Y., Shi F., Adv. Mater., 2014, 26, 7059CrossRefGoogle Scholar
  36. [36]
    Jung Y. C., Bhushan B., ACS Nano, 2009, 3, 4155CrossRefGoogle Scholar
  37. [37]
    Wang N., Xiong D., Deng Y., Shi Y., Wang K., ACS Appl. Mater. In-terfaces, 2015, 7, 6260CrossRefGoogle Scholar
  38. [38]
    Zhu X., Zhang Z., Men X., Yang J., Xu X., ACS Appl. Mater. Inter-faces, 2010, 2, 3636CrossRefGoogle Scholar
  39. [39]
    Cheng Z., Hou R., Du Y., Lai H., Fu K., Zhang N., Sun K., ACS Appl. Mater. Interfaces, 2013, 5, 8753CrossRefGoogle Scholar
  40. [40]
    Chen X., Kong L., Dong D., Yang G., Yu L., Chen J., Zhang P., J. Phys. Chem. C, 2009, 113, 5396CrossRefGoogle Scholar
  41. [41]
    Cheng M., Song M., Dong H., Shi F., Small, 2015, 11, 1665CrossRefGoogle Scholar
  42. [42]
    Cassie A. B. D., Baxter S., Trans. Faraday Soc., 1944, 40, 546CrossRefGoogle Scholar
  43. [43]
    Vakarelski I. U., Marston J. O., Chan D. Y. C., Phys. Rev. Lett., 2011, 106, 214501CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhipeng Wang
    • 1
  • Songsong Zhang
    • 2
  • Shan Gao
    • 2
  • Xiao Ouyang
    • 2
  • Jie Li
    • 2
  • Rui Li
    • 1
  • Hao Wei
    • 2
  • Zhijun Shuai
    • 1
  • Wanyou Li
    • 1
  • Shanshan Lyu
    • 3
  1. 1.College of Power & Energy EngineeringHarbinP. R. China
  2. 2.Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education & College of Materials Science and Chemical EngineeringHarbin Engineering UniversityHarbinP. R. China
  3. 3.State Key Laboratory of Chemical Resource Engineering & Key Laboratory of Carbon Fiber and Functional Polymer, Ministry of EducationBeijing University of Chemical TechnologyBeijingP. R. China

Personalised recommendations