Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 5, pp 719–722 | Cite as

Highly Efficient Synthesis of Au130(SPh-Br)50 Nanocluster

  • Xiuqing Ren
  • Xuemei Fu
  • Xinzhang Lin
  • Chao Liu
  • Jiahui Huang
  • Jinghui Yan
Article

Abstract

We reported the synthesis of Au130(SPh-Br)50(Br-Ph-SH=4-bromothiophenol) nanocluster with high purity and high yield via “size focusing” and “ligand exchange” processes. The time of synthetic process was significantly reduced compared with previous synthetic routine. Au130(SPh-Br)50 was determined by UV-Vis absorption spectros-copy and matrix-assisted laser desorption ionization(MALDI) mass spectroscopy. Thermo-gravimetric analysis (TGA) and size-exclusion chromatogram(SEC) analyses confirmed the purity of Au130(SPh-Br)50. The yield of gold nanoc-lusters was 20%(based on HAuCl4).

Keywords

Au130 Gold nanocluster Thiolate ligand 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Kurashige W., Niihori Y., Sharma S., Negishi Y., Coordin. Chem. Rev., 2016, 320, 238CrossRefGoogle Scholar
  2. [2]
    Knoppe S., Burgi T., Acc. Chem. Res., 2014, 47, 1318CrossRefPubMedGoogle Scholar
  3. [3]
    Maity P., Xie S H., Yamauchi M., Tsukuda T., Nanoscale, 2012, 4, 4027CrossRefPubMedGoogle Scholar
  4. [4]
    Tsukuda T., Bull. Chem. Soc. Jpn., 2012, 85, 151CrossRefGoogle Scholar
  5. [5]
    Jin R., Zeng C., Zhou M., Chen Y., Chem. Rev., 2016, 116, 10346CrossRefGoogle Scholar
  6. [6]
    Daniel M., Astruc D., Chem. Rev., 2004, 104, 293CrossRefPubMedGoogle Scholar
  7. [7]
    Yuan X., Luo Z., Yu Y., Yao Q., Xie J., Chem-Asian J., 2013, 8, 858CrossRefPubMedGoogle Scholar
  8. [8]
    Kang X., Wang S., Song Y., Jin S., Sun G., Yu H., Zhu M., Angew. Chem. Int. Ed., 2016, 55, 3611CrossRefGoogle Scholar
  9. [9]
    Yao Q., Yuan X., Yu Y., Yu Y., Xie J., Lee J., J. Am. Chem. Soc., 2015, 137, 2128CrossRefPubMedGoogle Scholar
  10. [10]
    Kumar S., Jin R., Nanoscale, 2012, 4, 4222CrossRefPubMedGoogle Scholar
  11. [11]
    Russier-Antoine I., Bertorelle F., Vojkovic M., Rayane D., Salmon E., Jonin C., Dugourd P., Antoine R., Brevet P., Nanoscale, 2014, 6, 13572CrossRefPubMedGoogle Scholar
  12. [12]
    Zhu M., Aikens C., Hendrich M., Gupta R., Qian H., Schatz G., Jin R., J. Am. Chem. Soc., 2009, 131, 2490CrossRefPubMedGoogle Scholar
  13. [13]
    Wallace W., Wyrwas R., Whetten R., Mitric R., Bonacic-Koutecky V., J. Am. Chem. Soc., 2003, 125, 8408CrossRefPubMedGoogle Scholar
  14. [14]
    Negishi Y., Mizuno M., Hirayama M., Omatoi M., Takayama T., Iwase A., Kudo A., Nanoscale, 2013, 5, 7188CrossRefPubMedGoogle Scholar
  15. [15]
    Li G., Abroshan H., Liu C., Zhuo S., Li Z., Xie Y., Kim H. J., Rosi N. L., Jin R., ACS Nano, 2016, 10, 7998CrossRefPubMedGoogle Scholar
  16. [16]
    Chen H., Liu C., Wang M., Zhang C., Li G., Wang F., Chin. J. Catal., 2016, 37, 1787CrossRefGoogle Scholar
  17. [17]
    Yoon B., Hakkinen H., Landman U., Worz A. S., Antonietti J. M., Abbet S., Judai K., Heiz U., Science, 2005, 307, 403CrossRefPubMedGoogle Scholar
  18. [18]
    Schmid G., Chem. Soc. Rev., 2008, 37, 1909CrossRefPubMedGoogle Scholar
  19. [19]
    Alvarez M., Chen J., Plascencia-Villa G., Black D., Griffith W., Garzon I., Jose-Yacaman M., Demeler B., Whetten R., J. Phys. Chem. B, 2016, 120, 6430CrossRefPubMedGoogle Scholar
  20. [20]
    Luo Z., Zheng K., Xie J., Chem. Commum., 2014, 50, 5143CrossRefGoogle Scholar
  21. [21]
    Yang X., Yang M., Pang B., Vara M., Xia Y., Chem. Rev., 2015, 115, 10410CrossRefPubMedGoogle Scholar
  22. [22]
    Zheng K., Setyawati M., Leong D., Xie J., ACS Nano, 2017, 11, 6904CrossRefPubMedGoogle Scholar
  23. [23]
    Goswami N., Luo Z., Yuan X., Leong D., Xie J., Mater. Horiz., 2017, 4, 817CrossRefGoogle Scholar
  24. [24]
    Jin R., Qian H., Wu Z., Zhu Y., Zhu M., Mohanty A., Garg N., J. Phys. Chem. Lett., 2010, 1, 2903CrossRefGoogle Scholar
  25. [25]
    Akola J., Walter M., Whetten R. L., Hakkinen H., Gronbeck H., J. Am. Chem. Soc., 2008, 130, 3756CrossRefPubMedGoogle Scholar
  26. [26]
    Heaven M., Dass A., White P., Holt K., Murray R. J. Am. Chem. Soc., 2008, 130, 3754CrossRefPubMedGoogle Scholar
  27. [27]
    Qian H., Eckenhoff W. T., Zhu Y., Pintauer T., Jin R., J. Am. Chem. Soc., 2010, 132, 8280CrossRefPubMedGoogle Scholar
  28. [28]
    Liu C., Li T., Li G., Nobusada K., Zeng C., Pang G., Rosi N L., Jin R., Angewa. Chem. Int. Ed., 2015, 54, 9826CrossRefGoogle Scholar
  29. [29]
    Chen Y., Zeng C., Liu C., Kirschbaum K., Gayathri C., Gil R., Rosi N., Jin R., J. Am. Chem. Soc., 2015, 137, 10076CrossRefPubMedGoogle Scholar
  30. [30]
    Negishi Y., Sakamoto C., Ohyama T., Tsukuda T., J. Phys. Chem. Lett., 2012, 3, 1624CrossRefPubMedGoogle Scholar
  31. [31]
    Dass A., Theivendran S., Nimmala P., Kumara C., Jupally V., Fortu-nelli A., Sementa L., Barcaro G., Zuo X., Noll B., J. Am. Chem. Soc., 2015, 137, 4610CrossRefPubMedGoogle Scholar
  32. [32]
    Zeng C., Chen Y., Das A., Jin R., J. Phys. Chem. Lett., 2015, 6, 2976CrossRefPubMedGoogle Scholar
  33. [33]
    Zeng C., Liu C., Pei Y., Jin R., ACS Nano, 2013, 7, 6138CrossRefPubMedGoogle Scholar
  34. [34]
    Black D., Bhattarai N., Whetten R., Bach S., J. Phys. Chem. A, 2014, 118, 10679CrossRefPubMedPubMedCentralGoogle Scholar
  35. [35]
    Chakraborty I., Pradeep T., Chem. Rev., 2017, 117, 8208CrossRefPubMedGoogle Scholar
  36. [36]
    Liu C., Lin J., Shi Y., Li G., Nanoscale, 2015, 7, 5987CrossRefPubMedGoogle Scholar
  37. [37]
    Tang Z., Robinson D. A., Bokossa N., Xu B., Wang S., Wang G., J. Am. Chem. Soc., 2011, 133, 16037CrossRefPubMedGoogle Scholar
  38. [38]
    Jupally V., Dass A., Phys. Chem. Chem. Phys., 2014, 16, 10473CrossRefPubMedGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry & Environmental EngineeringChangchun University of Science and TechnologyChangchunP. R. China
  2. 2.Gold Catalysis Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianP. R. China
  3. 3.University of Chinese Academy of SciencesBeijingP. R. China

Personalised recommendations