Chemical Research in Chinese Universities

, Volume 34, Issue 4, pp 584–589 | Cite as

CXCR4 Peptide Conjugated Au-Fe2O3 Nanoparticles for Tumor-targeting Magnetic Resonance Imaging

  • Guifeng Liu
  • Hongda Chen
  • Shaonan Yu
  • Xiaodong Li
  • Zhenxin Wang


Peptide-functionalized Au-Fe2O3 nanoparticles(termed as anti-CXCR4-Au-Fe2O3 NPs) have been constructed through conjugation of dumbbell-like Au-Fe2O3 NPs with C-X-C motif chemokine receptor 4(CXCR4) binding cyclic peptide. One dumbbell-like Au-Fe2O3 NP composes an Au NP[(3.3±0.3) nm in diameter] for conjugating CXCR4 binding cyclic peptide through Au-S covalent bond and a Fe2O3 NP[(8.7±0.8) nm in diameter] for using as T2-weighted magnetic resonance imaging(MRI) contrast agent. The anti-CXCR4-Au-Fe2O3 NPs have reasonable biocompatibility and integration of T2-weighted MRI contrast and tumor-targeting functionalities. The anti-CXCR4-Au-Fe2O3 NPs exhibit strong interactions with two kinds of breast tumor cells, MCF-7 cells and MDA-MB-231 cells, and high negative contrast in MRI of MDA-MB-231 tumor bearing mouse with 62% decreasing of MRI signal, indicating that the anti-CXCR4-Au-Fe2O3 NPs can recognize tumor with high efficacy and specificity.


Dumbbell-like Au-Fe2O3 nanoparticle C-X-C motif chemokine receptor 4 Cyclic peptide T2-Weighted magnetic resonance imaging Tumor targeting ability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Dempsey M. F., Condon B., Hadley D. M., Seminars in Ultrasound, CT and MRI, 2002, 23(5), 392CrossRefPubMedGoogle Scholar
  2. [2]
    Willinek W. A., Schild H. H., Eur. J. Radiol., 2008, 65(1), 2CrossRefPubMedGoogle Scholar
  3. [3]
    Li D. Z., Chen H. D., Bi F., Wang Z. X., Chin. J. Anal. Chem., 2016, 44(10), 1609CrossRefGoogle Scholar
  4. [4]
    Shao Y. P., Cherry S. R., Farahani K., Meadors K., Siegel S., Silverman R. W., Marsden P. K., Phys. Med. Biol., 1997, 42(10), 1965CrossRefPubMedGoogle Scholar
  5. [5]
    Baker M., Nature, 2010, 463(7283), 977CrossRefGoogle Scholar
  6. [6]
    Baker M., Nat. Methods, 2010, 7(12), 957CrossRefGoogle Scholar
  7. [7]
    Lee D. E., Koo H., Sun I. C., Ryu J. H., Kim K., Kwon I. C., Chem. Soc. Rev., 2012, 41, 2656CrossRefPubMedGoogle Scholar
  8. [8]
    Ling D., Lee N., Hyeon T., Acc. Chem. Res., 2015, 48(5), 1276CrossRefPubMedGoogle Scholar
  9. [9]
    Shen Z. Y., Wu A. G., Chen X. Y., Mol. Pharmaceutics, 2017, 14(5), 1352CrossRefGoogle Scholar
  10. [10]
    Schleich N., Po C., Jacobs D., Ucakar B., Gallez B., Danhier F., Préat V., J. Controlled Release, 2014, 194(28), 82CrossRefGoogle Scholar
  11. [11]
    Chen F., Cai W. B., Small, 2014, 10(10), 1887CrossRefPubMedPubMedCentralGoogle Scholar
  12. [12]
    Shi S. X., Yang K., Hong H., Chen F., Valdovinos H. F., Goel S., Barnhart T. E., Liu Z., Cai W. B., Biomaterials, 2015, 39, 39CrossRefPubMedGoogle Scholar
  13. [13]
    Liu J. X., Chen H. D., Fu Y., Li X. D., Chen Y. X., Zhang H. M., Wang Z. X., J. Mater. Chem. B, 2017, 5, 8554CrossRefGoogle Scholar
  14. [14]
    Morshed R. A., Muroski M. E., Dai Q., Wegscheid M. L., Auffinger B., Yu D., Han Y., Zhang L., Wu M., Cheng Y., Lesniak M. S., Mol. Pharmaceutics, 2016, 13(6), 1843CrossRefGoogle Scholar
  15. [15]
    Chen H. D., Li X. D., Liu F. Y., Zhang H. M., Wang Z. X., Mol. Pharmaceutics, 2017, 14(9), 3134CrossRefGoogle Scholar
  16. [16]
    Sharma S., Kotamraju V. R., Mölder T., Tobi A., Teesalu T., Ruoslahti E., Nano Lett., 2017, 17(3), 1356CrossRefPubMedPubMedCentralGoogle Scholar
  17. [17]
    Li T., Mello-Thoms C., Brennan P. C., Breast Cancer Res. Treat., 2016, 159(3), 395CrossRefPubMedGoogle Scholar
  18. [18]
    de Clercq E., Nat. Rev. Drug Discovery, 2003, 2(7), 581CrossRefPubMedGoogle Scholar
  19. [19]
    Demmer O., Dijkgraaf I., Schumacher U., Marinelli L., Cosconati S., Gourni E., Wester H. J., Kessler H., J. Med. Chem., 2011, 54(21), 7648CrossRefPubMedGoogle Scholar
  20. [20]
    Demmer O., Frank A. O., Hagn F., Schottelius M., Marinelli L., Cosconati S., Brack-Werner R., Kremb S., Wester H. J., Kessler H., Angew. Chem., Int. Ed., 2012, 51(32), 8110CrossRefGoogle Scholar
  21. [21]
    Maro S. D., Trotta A. M., Brancaccio D., Leva F. S. D., Pietra V. L, Ieranò C., Napolitano M., Portella L., D’Alterio C., Siciliano R. A., Sementa D., Tomassi S., Carotenuto A., Novellino E., Scala S., Marinelli L., J. Med. Chem., 2016, 59(18), 8369CrossRefPubMedGoogle Scholar
  22. [22]
    Yang M., Cheng K., Qi S. B., Liu H. G., Jiang Y. X., Jiang H., Li J. B., Chen K., Zhang H. M., Cheng Z., Biomaterials, 2013, 34, 2796CrossRefPubMedPubMedCentralGoogle Scholar
  23. [23]
    Yu H., Chen M., Rice P. M., Wang S. X., White R. L., Sun S H., Nano Lett., 2005, 5(2), 379CrossRefPubMedGoogle Scholar
  24. [24]
    Xu C. J., Xie J., Ho D., Wang C., Kohler N., Walsh E. G., Morgan J. R., Chin Y. E., Sun S. H., Angew. Chem., Int. Ed., 2008, 47(1), 173CrossRefGoogle Scholar
  25. [25]
    Cheng K., Yang M., Zhang R. P., Qin C. Q., Su X. H., Cheng Z., ACS Nano, 2014, 8(10), 9884CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Guifeng Liu
    • 1
  • Hongda Chen
    • 2
  • Shaonan Yu
    • 1
  • Xiaodong Li
    • 3
  • Zhenxin Wang
    • 2
  1. 1.Department of RadiologyChina-Japan Union Hospital of Jilin UniversityChangchunP. R. China
  2. 2.State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
  3. 3.Department of Radiologythe First Hospital of Jilin UniversityChangchunP. R. China

Personalised recommendations