Advertisement

Modulation of Supramolecular Interactions of Urea-based Supramolecular Polymers via Molecular Structures

  • Zhiyi Lu
  • Liming Tang
Article
  • 3 Downloads

Abstract

Linear bis-urea D230 series and branched tris-urea T403 series of supramolecular monomers were synthesized using low molecular weight polyetheramine D230, T403 and isocyanates with diverse functional groups. Rheological tests reveal that the materials possess special thermal and mechanical properties due to the strong hydrogen bonding interactions between terminal urea groups and the high flexibility of the polyetheramine middle segments. By enhancing the hydrogen bonding interactions through electronic effects of the substituted urea groups, the mechanical properties of the bulk material can be increased. Moreover, the branched T403 series with higher hydrogen bonding density also shows better performance against D230 series with the same substituted urea groups. The presence of π-π stacking between the phenyl groups in samples with phenylurea residues, which complements the hydrogen bonding, was also confirmed by fluorescence spectroscopy, therefore resulting in a stronger supramolecular polymer network.

Keywords

Urea Hydrogen bonding π-π Stacking Structure and property Rheology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2018_8006_MOESM1_ESM.pdf (438 kb)
Modulation Supramolecular Interactions of Urea-based Supramolecular Polymers via Molecular Structures

References

  1. [1]
    Brunsveld L., Folmer B. J. B., Meijer E. W., Sijbesma R. P., Chem. Rev., 2001 101(12), 4071CrossRefGoogle Scholar
  2. [2]
    Seiffert S., Sprakel J., Chem. Soc. Rev., 2012 41(2), 909CrossRefGoogle Scholar
  3. [3]
    Aida T., Meijer E. W., Stupp S. I., Science, 2012 335(6070), 813CrossRefGoogle Scholar
  4. [4]
    Zhang C., Wang J., Wang J. J., Li M., Yang X. L., Xu H. B., Chem.-Eur. J., 2012 18(47), 14954CrossRefGoogle Scholar
  5. [5]
    Busseron E., Ruff Y., Moulin E., Giuseppone N., Nanoscale, 2013 5(16), 7098CrossRefGoogle Scholar
  6. [6]
    Rybtchinski B., ACS Nano, 2011 5(9), 6791CrossRefGoogle Scholar
  7. [7]
    Burattini S., Colquhoun H. M., Greenland B. W., Hayes W., Wade M., Macromol. Rapid Comm, 2009 30(6), 459CrossRefGoogle Scholar
  8. [8]
    Haag R., Angew. Chem. Int. Ed., 2004 43(3), 278CrossRefGoogle Scholar
  9. [9]
    Li J., Li X., Ni X., Wang X., Li H., Leong K. W., Biomaterials, 2006 27(22), 4132CrossRefGoogle Scholar
  10. [10]
    Bae Y., Fukushima S., Harada A., Kataoka K., Angew. Chem. Int. Ed., 2003 42(38), 4640CrossRefGoogle Scholar
  11. [11]
    de Espinosa L. M., Fiore G. L., Weder C., Foster E. J., Simon Y. C., Prog. Polym. Sci., 2015 49, 60CrossRefGoogle Scholar
  12. [12]
    Herbst F., Döhler D., Michael P., Binder W. H., Macromol. Rapid Comm, 2013 34(3), 203CrossRefGoogle Scholar
  13. [13]
    Herbst F., Seiffert S., Binder W. H., Polym. Chem., 2012 3(11), 3084CrossRefGoogle Scholar
  14. [14]
    Murphy E. B., Wudl F., Prog. Polym. Sci., 2010 35(1), 223CrossRefGoogle Scholar
  15. [15]
    Söntjens S. H. M., Meijer J. T., Kooijman H., Spek A. L., van Genderen M. H., Sijbesma R. P., Meijer E. W., Org. Let, 2001 3(24), 3887CrossRefGoogle Scholar
  16. [16]
    Wilson A. J., Soft Matter, 2007 3(4), 409CrossRefGoogle Scholar
  17. [17]
    Folmer B. J., Sijbesma R. P., Versteegen R. M., van der Rijt J. A. J., Meijer E. W., Adv. Mater, 2000 12(12), 874CrossRefGoogle Scholar
  18. [18]
    Meazza L., Foster J. A., Fucke K., Metrangolo P., Resnati G., Steed J. W., Nat. Chem, 2013 5(1), 42CrossRefGoogle Scholar
  19. [19]
    Burattini S., Greenland B. W., Merino D. H., Weng W. G., Seppala J., Colquhoun H. M., Hayes W., Mackay M. E., Hamley I. W., Rowan S. J., J. Am. Chem. Soc., 2010 132(34), 12051CrossRefGoogle Scholar
  20. [20]
    Burattini S., Colquhoun H. M., Fox J. D., Friedmann D., Greenland B. W., Harris P. J., Hayes W., Mackay M. E., Rowan S. J., Chem. Commun, 2009 44, 6717CrossRefGoogle Scholar
  21. [21]
    Hoeben F. J., Jonkheijm P., Meijer E. W., Schenning A. P., Chem. Rev., 2005 105(4), 1491CrossRefGoogle Scholar
  22. [22]
    Grindy S. C., Learsch R., Mozhdehi D., Cheng J., Barrett D. G., Guan Z., Messersmith P. B., Andersen N. H., Nat. Mater, 2015 14(12), 1210CrossRefGoogle Scholar
  23. [23]
    Hong G., Zhang H., Lin Y., Chen Y., Xu Y., Weng W., Xia H., Macromolecules, 2013 46(21), 8649CrossRefGoogle Scholar
  24. [24]
    Hunt J. N., Feldman K. E., Lynd N. A., Deek J., Campos L. M., Spruell J. M., Hernandez B. M., Kramer E. J., Hawker C. J., Adv. Mater., 2011 23(20), 2327CrossRefGoogle Scholar
  25. [25]
    Ustinov A., Weissman H., Shirman E., Pinkas I., Zuo X., Rybtchinski B., J. Am. Chem. Soc., 2011 133(40), 16201CrossRefGoogle Scholar
  26. [26]
    Zhang M., Xu D., Yan X., Chen J., Dong S., Zheng B., Huang F., Angew. Chem. Int. Ed., 2012 124(28), 7117CrossRefGoogle Scholar
  27. [27]
    Miyauchi M., Takashima Y., Yamaguchi H., Harada A., J. Am. Chem. Soc., 2005 127(9), 2984CrossRefGoogle Scholar
  28. [28]
    Vreekamp R. H., van Duynhoven J. P., Hubert M., Verboom W., Reinhoudt D. N., Angew. Chem. Int. Ed., 1996 35(11), 1215CrossRefGoogle Scholar
  29. [29]
    Sijbesma R. P., Beijer F. H., Brunsveld L., Folmer B. J. B., KyHir-schberg J. H. K., Lange R. F. M., Lowe J. K. L., Meijer E. W., Science, 1997 278(5343), 1601CrossRefGoogle Scholar
  30. [30]
    Parthasarathi R., Subramanian V., Sathyamurthy N., J. Phys. Chem. A, 2006 110(10), 3349CrossRefGoogle Scholar
  31. [31]
    Dai Z. H., Qiang L., Tang L. M., Guo B. H., RSC Adv., 2015 5(102), 84104CrossRefGoogle Scholar
  32. [32]
    Sivakova S., Bohnsack D. A., Mackay M. E., Suwanmala P., Rowan S. J., J. Am. Chem. Soc., 2005 127(51), 18202CrossRefGoogle Scholar
  33. [33]
    Chen Y., Kushner A. M., Williams G. A., Guan Z., Nat. Chem., 2012 4(6), 467CrossRefGoogle Scholar
  34. [34]
    Woodward P., Clarke A., Greenland B. W., Merino D. H., Yates L., Slark A. T., Miravet J. F., Hayes W., Soft Matter, 2009 5(10), 2000CrossRefGoogle Scholar
  35. [35]
    Woodward P. J., Hermida Merino D., Greenland B. W., Hamley I. W., Light Z., Slark A. T., Hayes W., Macromolecules, 2010 43(5), 2512CrossRefGoogle Scholar
  36. [36]
    Adarsh N. N., Kumar D. K., Dastidar P., Tetrahedron, 2007 63(31), 7386CrossRefGoogle Scholar
  37. [37]
    George M., Tan G., John V. T., Weiss R. G., Chem.-Eur. J., 2005 11(11), 3243CrossRefGoogle Scholar
  38. [38]
    Woodward P., Merino D. H., Hamley I. W., Slark A. T., Hayes W., Aust. J. Chem., 2009 62(8), 790CrossRefGoogle Scholar
  39. [39]
    Imato K., Nishihara M., Kanehara T., Amamoto Y., Takahara A., Ot-suka H., Angew. Chem. Int. Ed, 2012 51(5), 1138CrossRefGoogle Scholar
  40. [40]
    Wang Q., Mynar J. L., Yoshida M., Lee E., Lee M., Okuro K., Kin-bara K., Aida T., Nature, 2010 463(7279), 339CrossRefGoogle Scholar
  41. [41]
    Montarnal D., Tournilhac F., Hidalgo M., Couturier J. L., Leibler L., J. Am. Chem. Soc., 2009 131(23), 7966CrossRefGoogle Scholar
  42. [42]
    Cordier P., Tournilhac F., Soulié-Ziakovic C., Leibler L., Nature, 2008 451(7181), 977CrossRefGoogle Scholar
  43. [43]
    Park K., Lim W. H., Ko E. A., Lee H. S., J. Polym. Sci. Pol. Phys., 2011 49, 890CrossRefGoogle Scholar
  44. [44]
    Yuan W. Z., Lu P., Chen S., Lam J. W., Wang Z., Liu Y., Kwok H. S., Ma Y., Tang B. Z., Adv. Mater., 2010 22(19), 2159CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Materials, Ministry of Education, Department of Chemical EngineeringTsinghua UniversityBeijingP. R. China

Personalised recommendations