Chemical Research in Chinese Universities

, Volume 34, Issue 4, pp 571–577 | Cite as

Synthesis of 9-Substituted Berberine Derivatives with Microwave Irradiation

  • Xie Han
  • Kaiyuan Shao
  • Wenxiang HuEmail author


Hyperglycemia is frequently accompanying with hyperlipidemia. To explore the potent drugs with dual-activity and dual-site effects that could reduce blood glucose and blood lipid at the same time, fibrate group with lipid-lowering effect on the 9th position of berberine(BBR) was introduced using the drug design combination principle and the multitarget collaborative treatment method. Moreover, the molecular structure of BBR was modified, and six 9-substituted derivatives of BBR were designed and synthesized, among which, five compounds have never been reported before. In addition, the molecular structures of these derivatives were identified using liquid chromatography-mass spectrometry(LC-MS), 1H nuclear magnetic resonance(1H NMR) and 13C NMR, respectively. Furthermore, the microwave irradiation experimental technique was applied in the synthesis reaction using the novel microwave synthesizer, which accelerated the reaction rate, enhanced the reaction yield, reduced the reaction by-products, and simplified the post-processing steps. In the meantime, the 9-position regioselective demethylation of BBR was explored through quantum chemical calculation during the synthesis of berberrubine. The computations were consistent with the experimental results, which contributed to deducing the mechanism of its selective methylation.


Berberine derivative Microwave irradiation Quantum chemistry Regioselectivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2018_7425_MOESM1_ESM.pdf (2.6 mb)
Synthesis of 9-Substituted Berberine Derivatives with Microwave Irradiation


  1. [1]
    Li B., Zhu W. L., Cheng K. X., Acta Pharm. Sin., 2008, 43, 773Google Scholar
  2. [2]
    Yin J., Hu R., Chen M., Tang J., Li F., Yang Y., Chen J., Metabolism, 2002, 51, 1439CrossRefPubMedGoogle Scholar
  3. [3]
    Kong W., Wei J., Abidi P., Lin M., Inaba S., Li C., Wang Y., Wang Z., Si S., Pan H., Wang Y., Li Z., Liu J., Jiang J. D., Nat. Med., 2004, 10, 1344CrossRefPubMedGoogle Scholar
  4. [4]
    Hu W. X., Xu L. L., Wang Z., Jing J., Zhang Z. Y., Antidiabetics and Antiatheroscloresis Medicine Compounds and Preparing Method Thereof, ZL200710179390.3, 2011Google Scholar
  5. [5]
    Ma L. J., Modern J. Integrated Tradi. Chin. Western Med., 2013, 22, 3453Google Scholar
  6. [6]
    Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Peters-son G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmay-lov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staro-verov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam N. J., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannen-berg J. J., Dapprich S., Daniels A. D., Farkas Ö., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, Revision A. 1, Gaussian Inc., Wallingford CT, 2009Google Scholar
  7. [7]
    Lv D. X., ChemicaI Constituents and Their Biological Activities from Berberisagricolaahrendt, Southwest University, Chongqing, 2007Google Scholar
  8. [8]
    BodiwalaH. S., Sabde S., Mitra D., BhutaniK. K., Singh I. P., J. Eur. J. Med. Chem., 2011, 46, 1045CrossRefGoogle Scholar
  9. [9]
    Biswanath D., Srinivas K. V. N. S., Syn. Commun., 2002, 32, 3027CrossRefGoogle Scholar
  10. [10]
    Zhang M. X., Li C., Zheng J., Li X. G., The Third National Conference on Organic Synthetic Chemistry and Process, Chongqing, 2010Google Scholar
  11. [11]
    Liu L. X., Yuan X., Gao Y., Zhou D. B., Nat. Prod. Res. Dev., 2014, 26, 427Google Scholar
  12. [12]
    Jiang Y. R., Polyaminomodified Berberine Derivatives as New and Strong DNA-binders, Sun Yat-sen University, Guangzhou, 2006Google Scholar
  13. [13]
    Hong J., Study on the Synthesis and Anti Inflammatory Activity of Four Hydrogen Berberine Derivatives, Jinan University, Guangzhou, 2013Google Scholar
  14. [14]
    Chen J., Wang T., Xu S., Lin A., Yao H., Xie W., Zhu Z., Xu J., Eur. J. Med. Chem., 2017, 132, 173CrossRefPubMedGoogle Scholar
  15. [15]
    Huang L., Luo Z., He F., Lu J., Li X., Bioorgan. Med. Chem., 2010, 18, 4475CrossRefGoogle Scholar
  16. [16]
    Jiang H. L., Wang X., Huang L., Luo Z. H., Su T., Ding K., Li X. S., Bioorgan. Med. Chem., 2011, 19, 7228CrossRefGoogle Scholar
  17. [17]
    Zhang W. J., Ou T. M., Lu Y. J., Huang Y. Y., Wu W. B., Huang Z. S., Zhou J. L., Wong K. Y., Gu L. Q., Bioorgan. Med. Chem., 2007, 15, 5493CrossRefGoogle Scholar
  18. [18]
    Qiu Z. B., The Structure Modification Study on Componenet of Coptis and Magnolia Herb Pairs, Guangzhou University of Chinese Medicine, Guangzhou, 2012Google Scholar
  19. [19]
    He Y., Gao Y. H., Wu Z. H., Preparation Method and Application of 9-Substituted Double-Functional Group Berberine Derivative, CN 106045989A, 2016Google Scholar
  20. [20]
    Lu M. W., Hu W. X., Chin. J. Org. Chem., 1995, 6, 561Google Scholar
  21. [21]
    Hu W. X., Hu W. H., Wang J. Y., Ding J. F., Yu L. H., Chin. J. Med. Chem., 1999, 9(1), 70Google Scholar
  22. [22]
    Liu M., Hu W. X., Adv. Mater Res., 2013, 22, 1711Google Scholar
  23. [23]
    Han X., Shao K. Y., Hu W. X., J. Microwave Chem., 2017, 1(1), 15CrossRefGoogle Scholar
  24. [24]
    Shen X. Z., He H. J., Yang B. W., Zhao Z. G., Shao K. Y., Hu W. X., Chem. Res. Chinese Universities, 2017, 33(5), 773CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemical Engineering and PharmacyWuhan Institute of TechnologyWuhanP. R. China
  2. 2.Jingdong Xianghu Microwave Chemistry Union LaboratoryBeijing Excalibur Space Military Academy of Medical SciencesBeijingP. R. China
  3. 3.Space Systems Division, Strategic Support TroopsChinese People’s Liberation ArmyBeijingP. R. China

Personalised recommendations