Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 4, pp 684–690 | Cite as

Preparation and Properties of Magnetic-fluorescent Microporous Polymer Microspheres

  • Xiaohu Zou
  • Zhizhi Wei
  • Jing Du
  • Xiaotao Wang
  • Gaowen Zhang
Article
  • 23 Downloads

Abstract

Microporous microspheres can be used as functional nanomaterial carriers for their microporous structure and higher specific surface area. In this study, magnetic fluorescent polymer microspheres were prepared by incorporating Fe3O4 nanoparticles and CdSe/ZnS quantum dots(QDs) into hyper-crosslinked microporous polymer microspheres(HCMPs) via the in situ coprecipitation method and swelling-diffusion. The HCMPs predominantly have micropores, and their specific surface area is as high as 703.4 m2/g. The magnetic-fluorescent microspheres maintain the superparamagnetic behavior of Fe3O4, and the saturation magnetization reaches 38.6 A·m2/kg. Moreover, the composite microspheres exhibit an intense emission peak at 530 nm and achieve good fluorescence.

Keywords

Microporous polymer Magnetic-fluorescent polymer microsphere Hyper-crosslinking Superparamagnetism Quantum dot 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Wu D. C., Xu F., Sun B., Fu R. W., He H. K., Matyjaszewski K., Chem. Rev., 2012, 112, 3959CrossRefGoogle Scholar
  2. [2]
    Xu S. J., Liang L. Y., Li B. Y., Luo Y. L., Liu C. M., Tan B. E., Prog. Chem., 2011, 23(10), 2085Google Scholar
  3. [3]
    Zhang Y. B., Su J., Furukawa H., Yun Y., Gandara F., Duong A., Zou X., Yaghi O. M., J. Am. Chem. Soc., 2013, 135(44), 16336CrossRefGoogle Scholar
  4. [4]
    Ding S. Y., Wang W., Chem. Soc. Rev., 2013, 42(2), 548CrossRefGoogle Scholar
  5. [5]
    Rose I., Carta M., Malpassevans R., Ferrari M. C., Bernardo P., Clarizia G., Jansen J. C., McKeown N. B., ACS Macro Lett., 2015, 4(9), 912CrossRefGoogle Scholar
  6. [6]
    Xie Z., Li Y. S., Chen L., Jiang D. L., Acta Polym. Sin., 2016, 12, 1621Google Scholar
  7. [7]
    Tan L. X., Tan B. E., Chem. Soc. Rev., 2017, 46(11), 3322CrossRefGoogle Scholar
  8. [8]
    Pan L., Chen Q., Zhu J. H., Yu J., He Y., Han B. H., Polym. Chem., 2015, 6(13), 2478CrossRefGoogle Scholar
  9. [9]
    Hug S., Stegbauer L., Oh H., Hirscher M., Lotsch B. V., Chem. Mater., 2015, 27(23), 8001CrossRefGoogle Scholar
  10. [10]
    Li W. Q., Zhang A. J., Gao H., Chen M. J., Liu A. H., Bai H., Li L., Chem. Commun., 2016, 52(13), 2780CrossRefGoogle Scholar
  11. [11]
    Yang Y. W., Tan B. E., Wood C. D., J. Mater. Chem. A, 2016, 4(39), 15072CrossRefGoogle Scholar
  12. [12]
    Yang X., Yu M., Zhao Y., Zhang C., Wang X. Y., Jiang J. X., J. Mater. Chem. A, 2014, 2(36), 15139CrossRefGoogle Scholar
  13. [13]
    Islam A., Liu Z. Y., Peng R. X., Jiang W. G., Lei T., Li W., Zhang L., Yang R. J., Qian G., Ge Z. Y., Chinese J. Polym. Sci., 2017, 35(2), 171Google Scholar
  14. [14]
    Lin S., Diercks C. S., Zhang Y. B., Kornienko N., Nichols E. M., Zhao Y., Paris A. R., Kim D., Yang P., Yaghi O. M., Chang C. J., Science, 2015, 349(6253), 1208CrossRefGoogle Scholar
  15. [15]
    Das S. K., Wang X., Lai Z., Micropor. Mesopor. Mat., 2017, 255, 76CrossRefGoogle Scholar
  16. [16]
    He Q., Zhang C., Li X., Wang X., Mu P., Jiang J. X., Acta Chim. Sinica, 2018, 76(3), 202CrossRefGoogle Scholar
  17. [17]
    Ma B. C., Ghasimi S., Landfester K., Zhang K. A. I., J. Mater. Chem. B, 2016, 4(30), 5112CrossRefGoogle Scholar
  18. [18]
    Huang W., Wang Z. J., Ma B. C., Ghasimi S., Gehrig D., Laquai F., Landfester K., Zhang K. A. I., J. Mater. Chem. A, 2016, 4(20), 7555CrossRefGoogle Scholar
  19. [19]
    Li P., Li K., Niu X., Fanet Y., RSC Adv., 2016, 6(101), 99034CrossRefGoogle Scholar
  20. [20]
    Lu S., Zhang D., Liu B., Xu H., Gu H. C., Chem. J. Chinese Universities, 2017, 38(4), 509Google Scholar
  21. [21]
    Leng Y., Wu W., Li L., Lin K., Sun K., Chen X., Li W., Adv. Funct. Mater., 2016, 26(42), 7581CrossRefGoogle Scholar
  22. [22]
    Gui R. J., Wang Y. F., Sun J., Colloids Surface B, 2014, 113(1), 1CrossRefGoogle Scholar
  23. [23]
    Wang H. G., Sun L., Li Y. P., Fei X. L., Sun M. D., Zhang C. Q, Li Y. X., Yang Q. B., Langmuir, 2011, 27(18), 11609CrossRefGoogle Scholar
  24. [24]
    Yi D. K., Selvan S. T., Lee S. S., Papaefthymiou G. C., Kundaliya D., Ying J. Y., J. Am. Chem. Soc., 2005, 127(14), 4990CrossRefGoogle Scholar
  25. [25]
    Guo J., Yang W., Wang C. C., He J., Chen J., Chem. Mater., 2006, 18(23), 5554CrossRefGoogle Scholar
  26. [26]
    Li P., Song Y., Liu C., Li X., Zhou G., Fan Y., Mater. Lett., 2014, 114, 132CrossRefGoogle Scholar
  27. [27]
    Xie M., Hu J., Wen C. Y., Zhang Z. L., Xie H. Y., Pang D. W., Nano-technology, 2011, 23(3), 035602Google Scholar
  28. [28]
    Tu C., Yang Y., Gao M., Nanotechnology, 2008, 19(10), 105601CrossRefGoogle Scholar
  29. [29]
    Weber J., Schmidt J., Thomas A., Böhlmann W., Langmuir, 2010, 26(19), 15650CrossRefGoogle Scholar
  30. [30]
    Galarneau A., Villemot F., Rodriguez J., Fajula F., Coasne B., Langmuir, 2016, 30(44), 13266CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaohu Zou
    • 1
  • Zhizhi Wei
    • 1
  • Jing Du
    • 1
  • Xiaotao Wang
    • 1
  • Gaowen Zhang
    • 1
  1. 1.Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical EngineeringHubei University of TechnologyWuhanP. R. China

Personalised recommendations