Advertisement

Synthesis of Polycarbonate Diols(PCDLs) via Two-step Process Using CH3COONa as an Effective Catalyst

  • Menglu Song
  • Xiangui Yang
  • Gongying Wang
Article

Abstract

Polycarbonate diols(PCDLs) with a number average molecular weight(Mn) of 2800 and a narrow polydispersity index(PDI=1.33) were synthesized from dimethyl carbonate(DMC) and 1,4-butanediol(BD) via a two-step process. The influences of the molar ratios of DMC to BD in the feedstock, polycondensation temperature and polycondensation time on the PCDLs preparation were studied. CH3COONa showed the best catalytic performance among the catalysts studied. The highest BD conversion of 73.8% and PCDLs yield of 64.7% were achieved under its optimum reaction conditions. Furthermore, based on the results of 1H NMR, the relationships between the ratio of end groups (—OCH3/—OH) of oligomers, the Mn and chain-end constitute of resultant polycarbonates were also investigated. The results indicate that PCDLs can be synthesized when the oligomers mostly bear hydroxyl end groups. In contrast, it was impossible to prepare PCDLs when the oligomers were enriched with methyl carbonate end groups.

Keywords

Polycarbonate diols(PCDLs) CH3COONa Two-step process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Jeon J. Y., Hwang E. Y., Eo S. C., Lee B. Y., Polym. Sci., Part A: Polym. Chem., 2014, 52(11), 1570CrossRefGoogle Scholar
  2. [2]
    Singh H., Jain A. K., J. Appl. Polym. Sci., 2009, 111(2), 1115Google Scholar
  3. [3]
    Garcia-Pacios V., Costa V., Colera M., Martin-Martinez J. M., Int. J. Adhes. Adhes., 2010, 30(6), 456CrossRefGoogle Scholar
  4. [4]
    Garcia-Pacios V., Colera M., Iwata Y., Martin-Martinez J. M., Prog. Org. Coat., 2013, 76(12), 1726CrossRefGoogle Scholar
  5. [5]
    Serkis M., Poreba R., Hodan J., Kredatusova J., Spirkova M., J. Appl. Polym. Sci., 2015, 132(42), 42672CrossRefGoogle Scholar
  6. [6]
    Sun J. J., Kuckling D., Polym. Chem., 2016, 7(8), 1642CrossRefGoogle Scholar
  7. [7]
    Qin Y. S., Sheng X. F., Liu S. J., Ren G. J., Wang X. H., Wang F. S., J. CO2 Util., 2015, 11, 3CrossRefGoogle Scholar
  8. [8]
    Liu Y., Ren W. M., He K. K., Zhang W. Z., Li W. B., Wang M., Lu X. B., J. Org. Chem., 2016, 81(19), 8959CrossRefGoogle Scholar
  9. [9]
    Liu Y., Zhou H., Guo J. Z., Ren W. M., Lu X. B., Angew. Chem. Int. Ed., 2017, 56(17), 4862CrossRefGoogle Scholar
  10. [10]
    Coates G. W., Moore D. R., Angew. Chem. Int. Ed., 2004, 43(48), 6618CrossRefGoogle Scholar
  11. [11]
    Anderson C. E., Vagin S. I., Xia W., Jin H., Rieger B., Macromolecules, 2012, 45(17), 6840CrossRefGoogle Scholar
  12. [12]
    Park J. H., Jeon J. Y., Lee J. J., Jang Y., Varghese J. K., Lee B. Y., Macromolecules, 2013, 46(9), 3301CrossRefGoogle Scholar
  13. [13]
    Zhang J., Zhu W. X., Li C.C., Zhang D., Xiao Y. N., Guan G. H., Zheng L.C., RSC Adv., 2015, 5(3), 2213CrossRefGoogle Scholar
  14. [14]
    Zhu W. X., Huang X., Li C. C., Xiao Y. N., Zhang D., Guan G. H., Polym. Int., 2011, 60(7), 1060CrossRefGoogle Scholar
  15. [15]
    Jiang Z. Z., Liu C., Gross R. A., Macromolecules, 2008, 41(13), 4671CrossRefGoogle Scholar
  16. [16]
    Matsumura S., Harai S., Toshima K., Macromol. Chem. Physics, 2000, 201(14), 1632CrossRefGoogle Scholar
  17. [17]
    Xu J.W., Feng E., Song J., J. Appl. Polym. Sci., 2014, 131(5), 39822CrossRefGoogle Scholar
  18. [18]
    Wang Z. Q., Yang X. G., Liu S. Y., Hu J., Zhang H., Wang G. Y., RSC Adv., 2015, 5(106), 87311CrossRefGoogle Scholar
  19. [19]
    Wang Z. Q., Yang X. G., Liu S. Y., Zhang H., Wang G. Y., Chem. Res. Chinese Universities, 2016, 32(3), 512CrossRefGoogle Scholar
  20. [20]
    Pitor P., Gabriel R., Polymer, 2004, 45(10), 3125CrossRefGoogle Scholar
  21. [21]
    Tomita K., Ida H., Polymer, 1975, 16(3), 185CrossRefGoogle Scholar
  22. [22]
    Gowda R. R., Chakraborty D., J. Mol. Catal. A: Chem., 2010, 333(1), 167CrossRefGoogle Scholar
  23. [23]
    Gowda R. R., Chakraborty D., J. Mol. Catal. A: Chem., 2011, 349(2), 86CrossRefGoogle Scholar
  24. [24]
    Li Q., Zhu W. X., Li C.C., Guan G. H, Zhang D., Xiao Y. N., Zheng L.C., Polym. Sci., Part A: Polym. Chem., 2013, 51(6), 1387CrossRefGoogle Scholar
  25. [25]
    Zhang T. J., Yang X. G., Li J. G., Hu Y., Wang G. Y., Acta Polym. Sin., 2012, (1), 63CrossRefGoogle Scholar
  26. [26]
    Jofre-Reche J. A., Garcia-Pacios V., Costa V., Colera M., Martin-Martinez J. M., Prog. Org. Coat., 2015, 88, 199CrossRefGoogle Scholar
  27. [27]
    Liu N., Zhao Y. H., Kang M. Q., Wang J. W., Wang X. K., Feng Y. L., Yin N., Li Q. F., Prog. Org. Coat., 2015, 82, 46CrossRefGoogle Scholar
  28. [28]
    Spirkova M., Poreba R., Pavlicevic J., Kobera L., Baldrian J., Pekarek M., J. Appl. Polym. Sci., 2012, 126(3), 1016CrossRefGoogle Scholar
  29. [29]
    Jiang Z. Z., Liu C., Xie W. C., Gross R. A., Macromolecules, 2007, 40(22), 7934CrossRefGoogle Scholar
  30. [30]
    Foy E., Farrell J. B., Higginbotham C. L., J. Appl. Polym. Sci., 2009, 111(1), 217CrossRefGoogle Scholar
  31. [31]
    Wang Z. Q., Yang X. G., Li J. G., Liu S. Y., Wang G. Y., J. Mol. Catal. A: Chem., 2016, 424, 77CrossRefGoogle Scholar
  32. [32]
    Naik P. U., Refes K., Sadaka F., Brachais C. H., Boni G., Couvercelle J. P., Picquet M., Plasseraud L., Polym. Chem., 2012, 3(6), 1475CrossRefGoogle Scholar
  33. [33]
    Wang J., Zheng L. C., Li C. C., Zhu W. X., Zhang D., Guan G. H., Xiao Y. N., Ind. Eng. Chem. Res., 2012, 51(33), 10785CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chengdu Institute of Organic ChemistryChinese Academy of ScienceChengduP. R. China
  2. 2.University of Chinese Academy of SciencesBeijingP. R. China

Personalised recommendations