Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 4, pp 541–545 | Cite as

A Label-free and Functional Fluorescent Oligonucleotide Probe Based on a G-Quadruplex Molecular Beacon for the Detection of Kanamycin

  • Yuqing Zhu
  • Wei Li
  • Suzhen Tan
  • Tianxiao Chen
Article
  • 17 Downloads

Abstract

A label-free and turn-off fluorescent method for the quantitative detection of kanamycin based on a functional molecular beacon was developed. The molecular beacon consists of two hairpin structures with a split G-rich oligonucleotide in the middle. The kanamycin’s aptamer formed the loops portion for recognizing kanamycin, and the G-quadruplex bound by Thioflavin T(ThT) was employed as the reporter. In the absence of target, the molecular beacon folded into double stem-loops and the splited G-rich oligonucleotid came close to form a G-quadruplex. When ThT bound to the G-quadruplex, the fluorescence intensity of the solution increased. Upon the addition of kanamycin, the function between kanamycin and aptamer unfolded the hairpin and disassembled the G-quadraplex structure, resulting in a significant decrease in the fluorescence intensity. A good linear relationship ranging from 0.7 nmol/L to 10 nmol/L was achieved and the limit of detection was 0.37 nmol/L. Besides, it could efficiently recognize kanamycin in real samples.

Keywords

Molecular beacon Fluorescence Kanamycin G-Quadruplex Thioflavin T 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Megoulas N. C., Koupparis M. A., Anal. Chim. Acta, 2005, 547, 64CrossRefGoogle Scholar
  2. [2]
    Cox L. A., Clin. Infect. Dis., 2006, 42, 1053CrossRefPubMedGoogle Scholar
  3. [3]
    Hurd H. S., Enoe C., Sorensen L., Wachman H., Corns S. M., Bryden K. M., Grenier M., Risk Anal., 2008, 28, 695CrossRefPubMedGoogle Scholar
  4. [4]
    Phillips I., Casewell M., Cox T., de Groot B., Friis C., Jones R., Nightingale C., Preston R., Waddell J., J. Antimicrob. Chemother., 2004, 54, 276CrossRefGoogle Scholar
  5. [5]
    Phillips I., Casewell M., Cox T., de Groot B., Friis C., Jones R., Nightingale C., Preston R., Waddell J., J. Antimicrob. Chemother., 2004, 53, 28CrossRefPubMedGoogle Scholar
  6. [6]
    Oertel R.Neumeister, Kirch W. V., J. Chromatogr. A, 2004, 1058, 197CrossRefPubMedGoogle Scholar
  7. [7]
    Kitasato I., Yokota M., Inouye S., Igarashi M., Chemotherapy, 1990, 36, 155CrossRefPubMedGoogle Scholar
  8. [8]
    Xing Y. P., Liu C., Zhou X. H., Sci. Rep.-UK, 2015, 5,8125CrossRefGoogle Scholar
  9. [9]
    Chen S. H., Liang Y. C., Chou Y. W., J. Sep. Sci., 2006, 29, 607CrossRefPubMedGoogle Scholar
  10. [10]
    Wang L. F., Peng J. D., Chromatographia, 2009, 69, 519CrossRefGoogle Scholar
  11. [11]
    Blanchaert B., Jorge E. P., Jankovics P., Adams E., Ann V. S., Chro-matographia, 2013, 76, 1505CrossRefGoogle Scholar
  12. [12]
    Long Y. H., Hernandez M., Kaale E., van Schepdael R. A., E., Bor-rull F., Calull M., Hoogmartens J., J. Chromatogr., 2003, 784, 255Google Scholar
  13. [13]
    Kaale E., Schepdael A.V., Roets E., Hoogmartens J., Electrophoresis, 2003, 24, 1119CrossRefPubMedGoogle Scholar
  14. [14]
    Isoherranen N., Soback S., J. AOAC. Int., 1999, 82, 1017PubMedGoogle Scholar
  15. [15]
    Wang X. Y., Zou M. J., Xu X., Lei R., Li K., Li N., Anal. Bioanal. Chem., 2009, 395, 2397CrossRefPubMedGoogle Scholar
  16. [16]
    Raz S. R., Bremer M. G. E. G., Haasnoot W., Norde W., Anal. Chem., 2009, 81, 7743CrossRefGoogle Scholar
  17. [17]
    Frasconi M., Tel-Vered R., Riskin M., Willner I., Anal. Chem., 2010, 82, 2512CrossRefPubMedGoogle Scholar
  18. [18]
    Althaus R., Berruga M. I., Montero A., Roca M., Molina M. P., Anal. Chim. Acta, 2009, 632, 159CrossRefGoogle Scholar
  19. [19]
    Chen Y. Q., Wang Z. Q., Wang Z. H., Tang S. S., Zhu Y., Xiao X. L., J. Agric. Food Chem., 2008, 56, 2944CrossRefPubMedGoogle Scholar
  20. [20]
    Loomans E. E. M. G., Wiltenburg J. V., Koets. M, Amerongen A. V., J. Agric., Food Chem., 2003, 51, 587CrossRefGoogle Scholar
  21. [21]
    Tyagi S., Kramer N. F. R., Biotechnol., 1996, 14, 303Google Scholar
  22. [22]
    Morrison L. E., Halder T. C., Stols L. M., Anal. Biochem., 1989, 183, 231CrossRefPubMedGoogle Scholar
  23. [23]
    Liu B., Yang X., Wang K., Chem. Res. Chinese Universities, 2012, 28(1), 37Google Scholar
  24. [24]
    Kostrikis L. G., Tyagi S., Mhlanga M. M., Ho D. D., Kramer F. R., Science, 1998, 279, 1228CrossRefPubMedGoogle Scholar
  25. [25]
    Tyagi S., Bratu D. P., Kramer F. R., Nat. Biotechnol., 1998, 16, 49CrossRefPubMedGoogle Scholar
  26. [26]
    Perlette J., Tan W., Anal. Chem., 2001, 73, 5544CrossRefPubMedGoogle Scholar
  27. [27]
    Fang X., Li J. J., Tan W., Anal. Chem., 2000, 72, 3280CrossRefPubMedGoogle Scholar
  28. [28]
    Li J., Tan W., Wang K., Xiao D., Yang X., He X., Tang Z., Anal. Sci., 2001, 17, 1149CrossRefPubMedGoogle Scholar
  29. [29]
    Tang Z., Wang K., Tan W., Li J., Liu L., Guo Q., Meng X., Ma C., Huang S., Nucleic Acids Res., 2003, 31, e148CrossRefPubMedPubMedCentralGoogle Scholar
  30. [30]
    Li J. J., Geyer R., Tan W., Nucleic Acids Res., 2000, 28, e52CrossRefPubMedPubMedCentralGoogle Scholar
  31. [31]
    Bourdoncle A., Estevez T. A., Gosse C., Lacroix L., Vekhoff P., Le S. T., Jullien L., Mergny J. L., J. Am. Chem. Soc., 2006, 128, 11094CrossRefPubMedGoogle Scholar
  32. [32]
    Williamson J. R., Annu. Rev. Biophys. Biomol. Struct., 1994, 23, 703CrossRefPubMedGoogle Scholar
  33. [33]
    Sundquist W. I., Klug A., Nature, 1989, 342, 825CrossRefPubMedGoogle Scholar
  34. [34]
    Song K. M., Cho M., Jo H., Min K., Jeon S. H., Kim T., Han M. S., Ku J. K., Ban C., Anal. Biochem., 2011, 415, 175CrossRefPubMedGoogle Scholar
  35. [35]
    Chen T. X., Ning F., Liu H. S., Wu K. F., Li W., Chinese Chem. Lett., 2017, 28, 1380CrossRefGoogle Scholar
  36. [36]
    Tong L. L., Li L., Chen Z., Biosens. Bioelectro., 2013, 49, 420CrossRefGoogle Scholar
  37. [37]
    Wen Y., Wang L., Li L., Sensors, 2016, 16, 12Google Scholar
  38. [38]
    Stoltenburg R., Nikolaus N., Strehlitz B., J. Anal. Methods Chem., 2012, 14, 383Google Scholar
  39. [39]
    Bhasikuttan A. C., Mohanty J., Chem. Commun., 2015, 51, 7581CrossRefGoogle Scholar
  40. [40]
    Tong L., Li L., Chen Z., Biosens. Bioelectron, 2013, 49, 420CrossRefPubMedGoogle Scholar
  41. [41]
    Nikolaus N., Strehlitz B., Sensors, 2014, 14, 37CrossRefGoogle Scholar
  42. [42]
    Amdursky N., Erez Y., Dan H. H., Acc. Chem. Res., 2012, 45, 1548CrossRefPubMedGoogle Scholar
  43. [43]
    Mohanty J., Barooah N., Dhamodharan V., J. Am. Chem. Soc., 2013, 135, 367CrossRefPubMedGoogle Scholar
  44. [44]
    Green J., Ying L., Klenerman D., Chem. Res. Chinese Universities, 2002, 18(1), 103Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Biological EngineeringChangsha University of Science and TechnologyChangshaP. R. China

Personalised recommendations