Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 4, pp 655–660 | Cite as

Assembly and Post-modification of Fe3O4@MIL-100(Fe) for Knoevenagel Condensation

  • Yanmei Zhang
  • Fan Zhang
  • Xiang Zhang
  • Yingmei Xu
  • Xiaohui Qi
  • Chunshan Quan
Article
  • 26 Downloads

Abstract

Many efforts have been devoted to the integration of magnetic nanoparticles and metal organic frameworks, which makes it easy and simple to separate the nano-sized metal organic frameworks from liquid phase. Amino-functionalized magnetic metal organic frameworks[Fe3O4@MIL-100(Fe)-NH2] were prepared by a stepwise assembly method followed by post-modification with electron-rich reagent. This magnetic catalyst was characterized by means of X-ray diffraction(XRD), transmission electron microscopy(TEM), scanning electron microscopy(SEM) and nitrogen adsorption, and tested in Knoevenagel condensation as a base catalyst. The magnetic catalyst exhibits a core-shell structure and can afford a high activity for the Knoevenagel condensation due to its bifunctional property and reduced diffusion limitation. Furthermore, it could be recovered magnetically and recycled three times. Although activity loss was observed in the recycle experiments, it could be reactivated by dispersing in a fresh modifier solution.

Keywords

Fe3O4 MIL-100(Fe) Heterogeneous catalyst Knoevenagel condensation Magnetic separation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Farha O. K., Hupp J. T., Accounts Chem. Res., 2010, 43(8), 1166CrossRefGoogle Scholar
  2. [2]
    Zhu Q. L., Xu Q., Chem. Soc. Rev., 2014, 43(16), 5468CrossRefGoogle Scholar
  3. [3]
    Sun Y. J., Zhou H. C., Sci. Technol. Adv. Mater., 2015, 16(5), 1CrossRefGoogle Scholar
  4. [4]
    Lee J. Y., Farha O. K., Roberts J., Chem. Soc. Rev., 2009, 38(5), 1450CrossRefGoogle Scholar
  5. [5]
    Dhakshinamoorthy A., Garcia H., ChemSusChem, 2014, 7(9), 2392CrossRefGoogle Scholar
  6. [6]
    Dhakshinamoorthy A., Alvaro M., Garcia H., Adv. Synth. Catal., 2010, 352(4), 711CrossRefGoogle Scholar
  7. [7]
    Horcajada P., Surblé S., Serre C., Hong D. Y., Seo Y. K., Chang J. S., Grenèche J. M., Margiolaki I., Férey G., Chem. Commun., 2007, 27(27), 2820CrossRefGoogle Scholar
  8. [8]
    Férey G., Serre C., Mellot C., Draznieks F., Millange S., Dutour J., Margiolaki I., Angew. Chem. Int. Ed., 2004, 43(46), 6296CrossRefGoogle Scholar
  9. [9]
    Zhang F. M., Jin Y., Shi J., Zhong Y. J., Zhu W. D., Shall S., Chem. Eng. J., 2015, 269, 236CrossRefGoogle Scholar
  10. [10]
    Zhang F. M., Shi J., Jin Y., Fu Y. H., Zhong Y. J., Zhu W. D., Chem. Eng. J., 2015, 259, 183CrossRefGoogle Scholar
  11. [11]
    Ke F., Qiu L. G., Yuan Y. P., Jiang X., Zhu J. F., J. Mater. Chem., 2012, 22(19), 9497CrossRefGoogle Scholar
  12. [12]
    Qian J. J., Qiu L. G., Wang Y. M., Yuan Y. P., Xie A. J., Shen Y. H., Dalton Trans., 2014, 43(10), 3978CrossRefGoogle Scholar
  13. [13]
    Ke F., Qiu L. G., Zhu J. F., Nanoscale, 2014, 6(3), 1596CrossRefGoogle Scholar
  14. [14]
    Zhang Y. M, Zhang J., Tian M. M., Quan C. S., Fan S. D., Chin. J. Catal., 2016, 37(3), 420CrossRefGoogle Scholar
  15. [15]
    Zhang Y. M., Dai T. L., Zhang J., Chu G., Quan C. S., Chin. J. Catal., 2016, 37(12), 2106CrossRefGoogle Scholar
  16. [16]
    Li W. G., Li G., Liu D., RSC Adv., 2016, 6(96), 94113CrossRefGoogle Scholar
  17. [17]
    Yang Y., Yao H. F., Xi F. G., Gao E. Q., J. Mol. Catal. A Chem., 2014, 390(8), 198CrossRefGoogle Scholar
  18. [18]
    Long Y., Zheng S., Zhang F. M., Front. Chem. Sci. Eng., 2016, 10(4), 534CrossRefGoogle Scholar
  19. [19]
    Opanasenko M., Dhakshinamoorthy A., Shamzhy M., Nachtigall P., Horacek M., Garcia H., Cejka J., Catal. Sci. Technol., 2013, 3(2), 500CrossRefGoogle Scholar
  20. [20]
    Young K. H., Hong D. Y., Chang J. S., Jhung S. H., Seo Kim J. H., Vimont A., Daturi M., Serre C., Ferey G., Angew. Chem. Int. Ed., 2008, 47(22), 4144Google Scholar
  21. [21]
    Avelina A., Mercedes P. S., Corma A., Iglesias M., Adv. Synth. Catal., 2012, 354(7),1347CrossRefGoogle Scholar
  22. [22]
    Gascon J., Aktay U., J. Catal., 2009, 261(1), 75CrossRefGoogle Scholar
  23. [23]
    Xing R., Fei Z., Chin. Chem. Soc., 2014, 61(10), 1093CrossRefGoogle Scholar
  24. [24]
    Burgoyne A. R., Meijboom R., Catal. Lett., 2013, 143(6), 563CrossRefGoogle Scholar
  25. [25]
    Wirz R., Ferri D., Baiker A., Langmuir, 2006, 22(8), 3698CrossRefGoogle Scholar
  26. [26]
    Xamena F. X. L., Cirujano F. G., Corma A., Micro. Meso. Mater., 2012, 157(27), 112CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life ScienceDalian Minzu UniversityDalianP. R. China

Personalised recommendations